Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 796–808 | Cite as

Electrochemically Treated Pencil Graphite Electrodes Prepared in One Step for the Electrochemical Determination of Paracetamol

  • O. Koyun
  • S. Gorduk
  • M. B. Arvas
  • Y. SahinEmail author
Article
  • 2 Downloads

Abstract

This article reports the electrochemical determination of paracetamol (PC) in the presence of ascorbic acid (AA) and caffeine (CF) using an electrochemically treated pencil graphite electrode. In this study, we describe the use of an electrode prepared by overoxidation between 0.0 and +2.1 V for paracetamol determination. The electrochemically treated pencil graphite electrodes (ETPGEs) were prepared using a cyclic voltammetric method. The electrode was characterized by Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Resonance Raman Spectroscopy. The differences in oxidation peak potentials were large enough to determine PC in the presence of AA and CF. The electroactive areas of the bare electrode and 10 scan-ETPGE in 0.5 M H2SO4 were calculated to be 0.0031 and 0.0341 cm2, respectively. The sensor (10 scan-ETPGE in 0.5 M H2SO4) was sensitive to the PC with 1.74 × 10–7 M limits of detection (S/N = 3). Finally, the developed method and the prepared electrodes were used for determination of PC in the pharmaceutical samples.

Keywords

paracetamol modified pencil graphite electrode overoxidized sensor pharmaceutical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afkhami, A., Khoshsafar, H., Bagheri, H., and Madrakian, T., Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode, Sens. Actuators, B, 2014, vol. 203, pp. 909–918.CrossRefGoogle Scholar
  2. 2.
    Mazer, M. and Perrone, J., Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management, J. Med. Toxicol., 2008, vol. 4, pp. 2–6.CrossRefGoogle Scholar
  3. 3.
    Lourenção, B.C., Medeiros, R.A., Rocha-Filho, R.C., Mazo, L.H., and Fatibello-Filho, O., Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a borondoped diamond electrode, Talanta, 2009, vol. 78, pp. 748–752.CrossRefGoogle Scholar
  4. 4.
    Pejić, N., Kolar-Anić, L., Anić, S., and Stanisavljev, D., Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique, J. Pharm. Biomed. Anal., 2006, vol. 41, pp. 610–615.CrossRefGoogle Scholar
  5. 5.
    Saraswathyamma, B., Grzybowska, I., Orlewska, C., Radecki, J., Dehaen, W., Kumar, K.G., and Radecka, H., Electroactive dipyrromethene-Cu(II) monolayers deposited onto gold electrodes for voltammetric determination of paracetamol, Electroanalysis, 2008, vol. 20, pp. 2317–2323.CrossRefGoogle Scholar
  6. 6.
    Yesilada, A., Erdogan, H., and Ertan, M., Second derivative spectrophotometric determination of p-aminophenol in the presence of paracetamol, Anal. Lett., 1991, vol. 24, pp. 129–138.CrossRefGoogle Scholar
  7. 7.
    Sun, D., Hu, W., and Ma, W., Simultaneous electrochemical detection of uric acid and ascorbic acid at a silver doped poly (glutamic acid) modified glassy carbon electrode, J. Anal. Chem., 2011, vol. 66, pp. 310–316.CrossRefGoogle Scholar
  8. 8.
    Fernandes, D.M., Silva, N., Pereira, C., Moura, C., Magalhães, J.M.C.S., Bachiller-Baeza, B., Rodríguez-Ramos, I., Guerrero-Ruiz, A., Delerue-Matos, C., and Freire, C., MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid, Sens. Actuators, B, 2015, vol. 218, pp. 128–136.Google Scholar
  9. 9.
    Amiri-Aref, M., Raoof, J.B., and Ojani, R., A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode, Sens. Actuators, B, 2014, vol. 192, pp. 634–641.CrossRefGoogle Scholar
  10. 10.
    Švorc, Ľ., Determination of caffeine: a comprehensive review on electrochemical methods, Int. J. Electrochem. Sci., 2013, vol. 8, pp. 5755–5773.Google Scholar
  11. 11.
    Nurminen, M.-L., Niittynen, L., Korpela, R., and Vapaatalo, H., Coffee, caffeine and blood pressure: a critical review, Eur. J. Clin. Nutr., 1999, vol. 53, pp. 831–839.CrossRefGoogle Scholar
  12. 12.
    Kerrigan, S. and Lindsey, T., Fatal caffeine overdose: Two case reports, Forensic Sci. Int., 2005, vol. 153, pp. 67–69.CrossRefGoogle Scholar
  13. 13.
    Bozdoğan, A., Acar, A.M., and Kunt, G.K., Simultaneous determination of acetaminophen and caffeine in tablet preparations by partial least-squares multivariate spectrophotometric calibration, Talanta, 1992, vol. 39, pp. 977–979.CrossRefGoogle Scholar
  14. 14.
    Koblová, P., Sklenářová, H., Brabcová, I., and Solich, P., Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column, Anal. Methods, 2012, vol. 4, pp. 1588–1591.CrossRefGoogle Scholar
  15. 15.
    Šatínský, D., Neto, I., Solich, P., Sklenářová, H., Conceição, M., Montenegro, B.S.M., and Araújo, A.N., Sequential injection chromatographic determination of paracetamol, caffeine, and acetylsalicylic acid in pharmaceutical tablets, J. Sep. Sci., 2004, vol. 27, pp. 529–536.Google Scholar
  16. 16.
    Bose, D., Durgbanshi, A., Martinavarro-Dominguez, A., Capella-Peiró, M., Carda-Broch, S., Esteve-Romero, J., and Gil-Agustí, M., Rapid determination of acetaminophen in physiological fluids by liquid chromatography using SDS mobile phase and ED detection, J. Chromatogr. Sci., 2005, vol. 43, pp. 313–318.CrossRefGoogle Scholar
  17. 17.
    Martínez-Algaba, C., Bermúdez-Saldaña, J.M., Villanueva-Camañas, R.M., Sagrado, S., and Medina-Hernández, M.J., Analysis of pharmaceutical preparations containing antihistamine drugs by micellar liquid chromatography, J. Pharm. Biomed. Anal., 2006, vol. 40, pp. 312–321.Google Scholar
  18. 18.
    McEvoy, E., Donegan, S., Power, J., and Altria, K., Optimisation and validation of a rapid and efficient microemulsion liquid chromatographic (MELC) method for the determination of paracetamol (acetaminophen) content in a suppository formulation, J. Pharm. Biomed. Anal., 2007, vol. 44, pp. 137–143.CrossRefGoogle Scholar
  19. 19.
    Moreira, A.B., Oliveira, H.P.M., Atvars, T.D.Z., Dias, I.L.T., Neto, G.O., Zagatto, E.A.G., and Kubota, L.T., Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy, Anal. Chim. Acta, 2005, vol. 539, pp. 257–261.CrossRefGoogle Scholar
  20. 20.
    Llorent-Martínez, E.J., Šatínský, D., Solich, P., Ortega-Barrales, P., and Molina-Díaz, A., Fluorimetric SIA optosensing in pharmaceutical analysis: Determination of paracetamol, J. Pharm. Biomed. Anal., 2007, vol. 45, pp. 318–321.Google Scholar
  21. 21.
    Zhao, S., Bai, W., Yuan, H., and Xiao, D., Detection of paracetamol by capillary electrophoresis with chemiluminescence detection, Anal. Chim. Acta, 2006, vol. 559, pp. 195–199.CrossRefGoogle Scholar
  22. 22.
    Chiou, J.-F., Chen, S.-L., Chen, S.-M., and Tsou, S.-S., Novel spectrophotometric method for RAPID quantifying acetaminophen concentration in emergent situation, J. Food Drug Anal., 2008, vol. 16, pp. 36–40.Google Scholar
  23. 23.
    Özcan, L. and Şahin, Y., Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode, Sens. Actuators, B, 2007, vol. 127, pp. 362–369.CrossRefGoogle Scholar
  24. 24.
    Sanghavi, B.J. and Srivastava, A.K., Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode, Electrochim. Acta, 2010, vol. 55, pp. 8638–8648.CrossRefGoogle Scholar
  25. 25.
    Özcan, A. and Şahin, Y., A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode, Anal. Chim. Acta, 2011, vol. 685, pp. 9–14.CrossRefGoogle Scholar
  26. 26.
    Jeevagan, A.J. and John, S.A., Electrochemical determination of caffeine in the presence of paracetamol using a self-assembled monolayer of non-peripheral amine substituted copper(II) phthalocyanine, Electrochim. Acta, 2012, vol. 77, pp. 137–142.CrossRefGoogle Scholar
  27. 27.
    Görçay, H., Türkoğlu, G., Şahin, Y., and Berber, H., Electrochemical determination of paracetamol by a novel derivative of formazan modified pencil graphite electrode, IEEE Sens. J., 2014, vol. 14, pp. 2529–2536.CrossRefGoogle Scholar
  28. 28.
    Tsierkezos, N.G., Ritter, U., Wetzold, N., and Hübler, A.C., Disposable multiwalled carbon nanotube printed film electrochemical determination of acetaminophen, dopamine, and uric acid, Anal. Lett., 2014, vol. 47, pp. 2829–2843.CrossRefGoogle Scholar
  29. 29.
    Haghshenas, E., Madrakian, T., and Afkhami, A., A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples, Mater. Sci. Eng. C, 2015, vol. 57, pp. 205–214.CrossRefGoogle Scholar
  30. 30.
    Khoshhesab, Z.M., Simultaneous electrochemical determination of acetaminophen, caffeine and ascorbic acid using a new electrochemical sensor based on CuO–graphene nanocomposite, RSC Adv., 2015, vol. 5, pp. 95140–95148.CrossRefGoogle Scholar
  31. 31.
    Filik, H., Çetintaş, G., Koç, S.N., Gülce, H., and Boz, İ., Nafion-graphene composite film modified glassy carbon electrode for voltammetric determination of p-aminophenol, Russ. J. Electrochem., 2014, vol. 50, pp. 243–252.Google Scholar
  32. 32.
    Gilbert, O., Swamy, B.E.K., Chandra, U., and Sherigara, B.S., Simultaneous detection of dopamine and ascorbic acid using polyglycine modified carbon paste electrode: A cyclic voltammetric study, J. Electroanal. Chem., 2019, vol. 636, pp. 80–85.CrossRefGoogle Scholar
  33. 33.
    Yang, L., Liu, D., Huang, J., and You, T., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified Electrode, Sens. Actuators, B, 2014, vol. 193, pp. 166–172.CrossRefGoogle Scholar
  34. 34.
    Chandra, U., Swamy, B.E.K., Gilbert, O., Shankar, S.S., Mahanthesha, K.R., and Sherigara, B.S., Electrocatalytic oxidation of dopamine at chemically modified carbon paste electrode with 2,4-dinitrophenyl hydrazine, Int. J. Electrochem. Sci., 2010, vol. 5, pp. 1–9.Google Scholar
  35. 35.
    Zhao, H., Zhang, Y., and Yuan, Z., Electrochemical determination of dopamine using a poly(2-picolinic acid) modified glassy carbon electrode, Analyst, 2001, vol. 126, pp. 358–360.CrossRefGoogle Scholar
  36. 36.
    Karabiberoğlu, Ş.U. and Dursun, Z., Highly catalytic activity of platinum-gold particles modified poly(paminophenol) electrode for oxygen reduction reaction, J. Solid State Electrochem., 2016, vol. 20, pp. 2009–2018.CrossRefGoogle Scholar
  37. 37.
    Konopka, S. and McDuffie, B., Diffusion coefficients of ferri-and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry, Anal. Chem., 1970, vol. 42, pp. 1741–1746.CrossRefGoogle Scholar
  38. 38.
    Engstrom, R.C., Electrochemical pretreatment of glassy carbon electrodes, Anal. Chem., 1982, vol. 54, pp. 2310–2314.CrossRefGoogle Scholar
  39. 39.
    Nagaoka, T. and Yoshino, T., Surface properties of electrochemically pretreated glassy carbon, Anal. Chem., 1986, vol. 58, pp. 1037–1042.CrossRefGoogle Scholar
  40. 40.
    Sun, B. and Skyllas-Kazacos, M., Chemical modification of graphite electrode materials for vanadium redox flow battery application. Part II. Acid treatments, Electrochim. Acta, 1992, vol. 37, pp. 2459–2465.CrossRefGoogle Scholar
  41. 41.
    Özcan, A. and Şahin, Y., Preparation of selective and sensitive electrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum, Biosens. Bioelectron., 2010, vol. 25, pp. 2497–2052.CrossRefGoogle Scholar
  42. 42.
    Li, Y. and Chen, S.-M., The electrochemical properties of acetaminophen on bare glassy carbon electrode, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 2175–2187.Google Scholar
  43. 43.
    Habibi, B., Jahanbakhshi, M., and Pournaghi-Azar, M.H., Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon–ceramic electrode, Anal. Biochem., 2011, vol. 411, pp. 167–175.CrossRefGoogle Scholar
  44. 44.
    Dalmasso, P.R., Pedano, M.L., and Rivas, G.A., Electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine, Sens. Actuators, B, 2012, vol. 173, pp. 732–736.CrossRefGoogle Scholar
  45. 45.
    Habibi, B., Jahanbakhshi, M., and Abazari, M., A modified single-walled carbon nanotubes/carbonceramic electrode for simultaneous voltammetric determination of paracetamol and caffeine, J. Iran. Chem. Soc., 2014, vol. 11, pp. 511–521.CrossRefGoogle Scholar
  46. 46.
    Kariuki, K.J., An electrochemical and spectroscopic characterization of pencil graphite electrodes, J. Electrochem. Soc., 2012, vol. 159, pp. 747–751.CrossRefGoogle Scholar
  47. 47.
    Navratil, R., Kotzianova, A., Halouzka, V., Opletal, T., Triskova, I., Trnkova, L., and Hrbac, J., Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study, J. Electroanal. Chem., 2016, vol. 783, pp. 152–160.CrossRefGoogle Scholar
  48. 48.
    Rider, A.E., Kumar, S., Furman, S.A., and Ostrikov, K.K., Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform, Chem. Commun., 2012, vol. 48, pp. 2659–2661.CrossRefGoogle Scholar
  49. 49.
    Rezaei, B., Boroujeni, M.K., and Ensafi, A.A., Development of Sudan II sensor based on modified treated pencil graphite electrode with DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer, Sens. Actuators, B, 2016, vol. 222, pp. 849–856.CrossRefGoogle Scholar
  50. 50.
    Cheemalapati, S., Palanisamy, S., Mani, V., and Chen, S.-M., Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocompositemodified glassy carbon electrode, Talanta, 2013, vol. 117, pp. 297–304.CrossRefGoogle Scholar
  51. 51.
    Guocheng, Y., Lu, W., Jianbo, J., Defeng, Z., and Dongfeng, L., Chemically modified glassy carbon electrode for electrochemical sensing paracetamol in acidic solution, J. Solid State Electrochem., 2012, vol. 16, pp. 2967–2977.CrossRefGoogle Scholar
  52. 52.
    Keyvanfard, M., Shakeri, R., Karimi-Maleh, H., and Alizad, K., Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan, Mater. Sci. Eng., C, 2013, vol. 33, pp. 811–816.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Yildiz Technical University, Faculty of Arts and Sciences, Department of ChemistryIstanbulTurkey

Personalised recommendations