Russian Journal of Electrochemistry

, Volume 54, Issue 11, pp 835–839 | Cite as

Specific Mass and Energy-Storage Properties of Carbon Electrodes Based on NORIT DLC SUPRA 50 Activated Carbon

  • V. V. ChernyavinaEmail author
  • A. G. Berezhnaya


The effect of the carbon-material specific mass on the electrochemical parameters of electrodes for supercapacitors on neutral aqueous electrolytes is studied. It is shown that the highest specific capacitance of 11 F/g is observed for electrodes with the specific mass of 1 mg/cm2. These electrodes are stable at the potential scan rate from 2 to 600 mV/s, in contrast to electrodes with the specific mass of 6 mg/cm2. As the power increases, the decrease in the specific energy of the electrode with the mass of 1 mg/cm2 is less pronounced as compared with the electrode with the mass of 6 mg/cm2. The specific energy of the former electrode is 8 W h/kg for the specific power of 20000 W/kg, whereas for the specific energy of the latter electrode is 5 W h/kg for the specific power of 2000 W/kg.


supercapacitor activated carbon neutral aqueous electrolyte specific capacitance power energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonnefoia, L., Simona, P., Fauvarquea, J.F., Sarrazinb, C., Sarraub, J.F., and Dugasta, A., Electrode compositions for carbon power supercapacitors, J. Power Sources, 1999, vol. 80, p. 149.CrossRefGoogle Scholar
  2. 2.
    Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M. A., Kvacheva, L.D., Konev D.V., Krestinin N.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chernobrodov, S.P., Prospective electrode materials for super-capacitors, Elektrokhim. Energ., 2012, vol. 12, no. 4, p. 167.Google Scholar
  3. 3.
    Salitra, G., Soffer, A., Eliad, L., Cohen, Y., and Aurbach, D., Carbon electrodes for double-layer capacitors. I. Relations between ion and pore dimensions, J. Electrochem. Soc., 2000, vol. 147, p. 2486.CrossRefGoogle Scholar
  4. 4.
    Atamanyuk, I.N., Vervikishko, D.E., Grigorenko, A.V., Sametov, A.A., Shkol’nikov, E.I., and Yanilkin, I.V., Study of the influence of the electrodes production technological features on the electrochemical characteristics of super-capacitor with the aqueous electrolyte, Elektrokhim. Energ., 2014, vol. 14, no. 1, p. 3.Google Scholar
  5. 5.
    Frackowiak, E. and Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, vol. 39, p. 937.CrossRefGoogle Scholar
  6. 6.
    Gamby, J., Taberna, P.L., Simon, P., Fauvarque, J.F., and Chesneau, M., Studies and charactersations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources, 2001, vol. 101, p. 109.CrossRefGoogle Scholar
  7. 7.
    Burke, A.F. and Miller, J.R., Electrochemical capacitors: challenges and opportunities for real-world applications, Proc. Advanced Capacitor Word Summit, USA, San Diego, 2009, p. 5.Google Scholar
  8. 8.
    Radeke, K.H., Backhaus, K.O., and Swiatkowski, A., Electrical conductivity of activated carbons, Carbon, 1991, vol. 29, p. 122.CrossRefGoogle Scholar
  9. 9.
    Beidaghi, M., Wang, Z., Gu, L., and Wang, C., Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes, J. Solid State Electrochem., 2012, vol. 16, p. 3341.CrossRefGoogle Scholar
  10. 10.
    Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q., and Yan, Z.F., Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 2006, vol. 44, p. 216.CrossRefGoogle Scholar
  11. 11.
    Conway, B.E., Electrochemical Supercapacitors—Scientific Fundamentals and Technological Applications, NewYork: Kluwer Academic/Plenum, 1999.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations