Advertisement

Russian Journal of Electrochemistry

, Volume 53, Issue 9, pp 1042–1053 | Cite as

The critical role of the transition-state cusp diameter in understanding adiabatic and non-adiabatic electron transfer

  • Jeffrey R. Reimers
  • Noel S. Hush
Section 3. Electron Transfer Kinetics and Electrochemical Processes
  • 52 Downloads

Abstract

The equation of Levich and Dogonadze describing the rate of electron-transfer processes in the weak-coupling “non-adiabatic” limit is understood in terms of the properties of general adiabatic electron-transfer theory. The cusp diameter describing the continuous changeover of Born–Oppenheimer adiabatic surfaces from donor-like to acceptor-like character is shown to be the critical property controlling reaction rates and intervalence spectra. Their work is presented in the context of general Born–Oppenheimer breakdown phenomena and linked to the overarching cusp catastrophe.

Keywords

electron transfer transition state theory cusp catastrophe Born–Oppenheimer breakdown non-adiabatic coupling diabatic surfaces Born–Huang surfaces diagonal coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levich, V.G. and Dogonadze, R.R., Theory of rediationless electron transitions between ions in solution, Proc. Akad. Nauk SSSR, 1959, vol. 24, pp. 9–13.Google Scholar
  2. 2.
    Levich, V.G. and Dogonadze, R.R., Adiabatic theory for electron-transfer processes in solution, Proc. Akad. Nauk SSSR, 1960, vol. 133, pp. 156–180.Google Scholar
  3. 3.
    Levich, V.G. and Dogonadze, R.R., Adiabatic theory of electron-transfer processes in solution, Collect. Czech. Chem. Commun., 1961, vol. 26, p. 193.CrossRefGoogle Scholar
  4. 4.
    Levich, V.G., Present state of the theory of oxidation–reduction in solution (bulk and electrode reactions), in Advances in Electrochemistry and Electrochemical Engineering, vol. 4, Delahaye, P., New York: Interscience Publishers, 1966, p. 249.Google Scholar
  5. 5.
    Marcus, R.A. and Sutin, N., Electron transfers in chemistry and biology, Biochim. Biophys. Acta, 1985, vol. 811, p. 265.CrossRefGoogle Scholar
  6. 6.
    Kuznetsov, A. and Ulstrup, J., Electron Transfer in Chemistry and Biology: An Introduction to the Theory, Chichester: Wiley, 1998.Google Scholar
  7. 7.
    Kubo, R. and Toyozawa, Y., Application of the method of generating function to radiative and non- ‡ = 2 q b (Qx ) radiative transitions of a arapped electron in a crystal, Prog. Theor. Phys., 1955, vol. 13, p. 160.CrossRefGoogle Scholar
  8. 8.
    Dirac, P.A.M., The quantum theory of the emission and absorption of radiation, Proc. Royal Soc. London, Ser. A, 1927, vol. 114, p. 243.CrossRefGoogle Scholar
  9. 9.
    Libby, W.F., Theory of electron exchange reactions in aqueous solution, J. Phys. Chem., 1952, vol. 56, p. 863.CrossRefGoogle Scholar
  10. 10.
    Marcus, R.J., Zwolinski, B.J., and Eyring, H., The electron tunnelling hypothesis for electron ex-change reactions, J. Phys. Chem., 1954, vol. 58, p. 432.CrossRefGoogle Scholar
  11. 11.
    Weiss, J., On the theory of electron-transfer processes in aqueous solutions, Proc. R. Soc. London, Ser. A, 1954, vol. 222, p. 128.CrossRefGoogle Scholar
  12. 12.
    Marcus, R.A., On the theory of oxidation-reduction reactions involving electron transfer, Part I, J. Chem. Phys., 1956, vol. 24, p. 966.CrossRefGoogle Scholar
  13. 13.
    Holstein, T., Studies of polaron motion, Part II: The “small” polaron, Annals Physics, 1959, vol. 8, p. 343.CrossRefGoogle Scholar
  14. 14.
    Holstein, T., Studies of polaron motion, Part I: The molecular-crystal model, Annals Physics, 1959, vol. 8, p. 325.CrossRefGoogle Scholar
  15. 15.
    Lax, M., The Franck–Condon principle and its application to crystals, J. Chem. Phys., 1952, vol. 20, p. 1752.CrossRefGoogle Scholar
  16. 16.
    Mielke, S.L., Tawa, G.J., Truhlar, D.G., and Schwenke, D.W., Quantum photochemistry. Accurate quantum scattering calculations for an electronically nonadiabatic reaction, Chem. Phys. Lett., 1995, vol. 234, p. 57.CrossRefGoogle Scholar
  17. 17.
    Polanyi, J.C. and Zewail, A.H., Direct observation of the transition state, Accounts Chem. Res., 1995, vol. 28, p. 119.CrossRefGoogle Scholar
  18. 18.
    Reimers, J.R., The importance of motions that accompany those occurring along the reaction coordinate, Aust. J. Chem., 2015, vol. 68, p. 1202.Google Scholar
  19. 19.
    Hush, N.S., Adiabatic rate processes at electrodes, J. Chem. Phys., 1958, vol. 28, p. 962.CrossRefGoogle Scholar
  20. 20.
    Hush, N.S., in Soviet electrochemistry: Proceedings of the Fourth Conference on Electrochemistry 1956, Frumkin, A.N., Ed., New York: Consultants Bureau, 1961, p. 99.Google Scholar
  21. 21.
    Delahay, P., Advances in Electrochemistry and Electrochemical Engineering, vol. 4, Electrochemistry, New York, N.Y.: Interscience, 1966.Google Scholar
  22. 22.
    Reimers, J.R., McKemmish, L., McKenzie, R.H., and Hush, N.S., Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born–Oppenheimer breakdown corrections, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24640.Google Scholar
  23. 23.
    London, F., Zur Quantentheorie der homöopolaren Valenzzahlen, Z. Phys., 1928, vol. 46, p. 455.CrossRefGoogle Scholar
  24. 24.
    London, F., On the theory of non-adiabatic chemical reactions, Z. Phys., 1932, vol. 74, p. 143.CrossRefGoogle Scholar
  25. 25.
    Eyring, H. and Polanyi, M., Concerning simple gas reactions, Z. Phys. Chem. Abt. B, 1931, vol. 12, p. 279.Google Scholar
  26. 26.
    Evans, M.G. and Polanyi, M., Inertia and driving force of chemical reactions, Trans. Faraday Soc., 1938, vol. 34, p. 11.CrossRefGoogle Scholar
  27. 27.
    Horiuti, J. and Polanyi, M., Outlines of a theory of proton transfer, J. Mol. Catalysis A, 2003, vol. 199, p. 185; Translation of Acta Physicochimica U.R.S.S, 1935, vol., pp. 505–532.CrossRefGoogle Scholar
  28. 28.
    Wall, F.T. and Glockler, G., The double minimum problem applied to the ammonia molecules, J. Chem. Phys., 1937, vol. 5, p. 314.CrossRefGoogle Scholar
  29. 29.
    Hush, N.S., Quantum-mechanical discussion of the gas phase formation of quinonedimethide monomers, J. Polymer Sci., 1953, vol. 11, p. 289.CrossRefGoogle Scholar
  30. 30.
    Reimers, J.R., McKemmish, L., McKenzie, R.H., and Hush, N.S., A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24598.CrossRefGoogle Scholar
  31. 31.
    Schmickler, W., A theory of adiabatic electron-transfer reactions, J. Electroanalyt. Chem. Interfacial Electrochem., 1986, vol. 204, p. 31.CrossRefGoogle Scholar
  32. 32.
    Hush, N.S., Electron transfer in retrospect and prospect 1: Adiabatic electrode processes, J. Electroanal. Chem., 1999, vol. 460, p. 5.CrossRefGoogle Scholar
  33. 33.
    Reimers, J.R., McKemmish, L., McKenzie, R.H., and Hush, N.S., Bond angle variations in XH3 [X = N, P, As, Sb, Bi]: The critical role of Rydberg orbitals exposed using a diabatic state model, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24618.CrossRefGoogle Scholar
  34. 34.
    McKemmish, L.K., McKenzie, R.H., Hush, N.S., and Reimers, J.R., Quantum entanglement between electronic and vibrational degrees of freedom in molecules, J. Chem. Phys., 2011, vol. 135, p. 244110.CrossRefGoogle Scholar
  35. 35.
    McKemmish, L., McKenzie, R.H., Hush, N.S., and Reimers, J.R., Electron-vibration entanglement in the Born–Oppenheimer description of chemical reactions and spectroscopy, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 24666.CrossRefGoogle Scholar
  36. 36.
    Born, M. and Oppenheimer, R., Zur Quantentheorie der Molekeln, Ann. Phys., 1927, vol. 84, p. 457.CrossRefGoogle Scholar
  37. 37.
    Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954.Google Scholar
  38. 38.
    Ballhausen, C.J. and Hansen, A.E., Electronic spectra, Annu. Rev. Phys. Chem., 1972, vol. 23, p. 15.CrossRefGoogle Scholar
  39. 39.
    Hush, N.S., Electron delocalization, structure and dynamics in mixed-valence systems, NATO Adv. Study Inst. Ser., Ser. C, 1980, vol. 58, p. 151.Google Scholar
  40. 40.
    Marcus, R.A., Chemical and electrochemical electron-transfer theory, Annu. Rev. Phys. Chem., 1964, vol. 15, p. 155.CrossRefGoogle Scholar
  41. 41.
    Shi, Z. and Boyd, R.J., Charge development at the transition state: a second-order Moeller-Plesset perturbation study of gas-phase SN2 reactions, J. Am. Chem. Soc., 1991, vol. 113, p. 1072.CrossRefGoogle Scholar
  42. 42.
    Williams, A., Effective charge and transition-state structure in solution, in Adv. Phys. Org. Chem., Bethell, D., Academic Press, 1992, p. 1.Google Scholar
  43. 43.
    Aragonès, A.C., Haworth, N.L., Darwish, N., Ciampi, S., Bloomfield, N.J., Wallace, G.G., Diez-Perez, I., and Coote, M.L., Electrostatic catalysis of a Diels–Alder reaction, Nature, 2016, vol. 531, p. 88.CrossRefGoogle Scholar
  44. 44.
    Shaik, S., Mandal, D., and Ramanan, R., Oriented electric fields as future smart reagents in chemistry, Nat. Chem., 2016, vol. 8, p. 1091.CrossRefGoogle Scholar
  45. 45.
    Wu, Y. and Boxer, S.G., A Critical test of the electrostatic contribution to catalysis with noncanonical amino acids in ketosteroid isomerase, J. Am. Chem. Soc., 2016, vol. 138, p. 11890.CrossRefGoogle Scholar
  46. 46.
    Andrews, D.L., Biological Energy 5: Electron Transfer Theory, Institute of Physics, 2016. biologicalphysics. iop.org/cws/article/lectures/53592.Google Scholar
  47. 47.
    Hush, N.S., Inequivalent XPS [X-ray photoelectron spectroscopy] binding energies in symmetrical delocalized mixed-valence complexes, Chem. Phys., 1975, vol. 10, p. 361.CrossRefGoogle Scholar
  48. 48.
    Öpik, U. and Pryce, M.H.L., Studies of the Jahn- Teller effect, I: A survey of the static problem, Proc. R. Soc. London, A, 1957, vol. 238, p. 425.CrossRefGoogle Scholar
  49. 49.
    Saunders, P.T., An Introduction to Catastrophe Theory, Cambridge: Cambridge University Press, 1980.CrossRefGoogle Scholar
  50. 50.
    Xu, F., Application of catastrophe theory to the ΔG–to–ΔG relationship in electron transfer reactions, Z. Phys. Chem., 1990, vol. 166, p. 79.CrossRefGoogle Scholar
  51. 51.
    Krokidis, X., Silvi, B., Dezarnaud-Dandine, C., and Sevin, A., Topological study, using a coupled ELF and catastrophe theory technique, of electron transfer in the Li + Cl2 system, New J. Chem., 1998, vol. 22, p. 1341.CrossRefGoogle Scholar
  52. 52.
    Wales, D.J., A microscopic basis for the global appearance of energy landscapes, Science, 2001, vol. 293, p. 2067.CrossRefGoogle Scholar
  53. 53.
    Tishchenko, O., Truhlar, D.G., Ceulemans, A., and Nguyen, M.T., A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals, J. Am. Chem. Soc., 2008, vol. 130, p. 7000.CrossRefGoogle Scholar
  54. 54.
    Bersuker, I.B., Gorinchoi, N.N., and Polinger, V.Z., On the origin of dynamic instability of molecular systems, Theor. Chim. Acta, 1984, vol. 66, p. 161.CrossRefGoogle Scholar
  55. 55.
    Bersuker, I.B., Pseudo-Jahn—Teller effect–A twostate paradigm in formation, deformation, and transformation of molecular systems and solids, Chem. Rev., 2013, vol. 113, p. 1351.CrossRefGoogle Scholar
  56. 56.
    Thompson, T.C., Truhlar, D.G., and Mead, C.A., On the form of the adiabatic and diabatic representation and the validity of the adiabatic approximation for X[sub 3] Jahn–Teller systems, J. Chem. Phys., 1985, vol. 82, p. 2392.CrossRefGoogle Scholar
  57. 57.
    Kendrick, B.K., Mead, C.A., and Truhlar, D.G., Properties of nonadiabatic couplings and the generalized Born–Oppenheimer approximation, Chem. Phys., 2002, vol. 277, p. 31.CrossRefGoogle Scholar
  58. 58.
    Zhu, C., Jasper, A.W., and Truhlar, D.G., Non- Born–Oppenheimer trajectories with self-consistent decay of mixing, J. Chem. Phys., 2004, vol. 120, p. 5543.CrossRefGoogle Scholar
  59. 59.
    Jasper, A.W. and Truhlar, D.G., Non-Born–Oppenheimer molecular dynamics for conical intersections, avoided crossings, and weak interactions, Adv. Ser. Phys. Chem., 2011, vol. 17, p. 375.Google Scholar
  60. 60.
    Kolos, W. and Wolniewicz, L., Improved theoretical ground-state energy of the hydrogen molecule, J. Chem. Phys., 1968, vol. 49, p. 404.CrossRefGoogle Scholar
  61. 61.
    Garrett, B.C. and Truhlar, D.G., Nuclear-motion corrections to Born–Oppenheimer barrier heights for chemical reactions, J. Chem. Phys., 1985, vol. 82, p. 4543.CrossRefGoogle Scholar
  62. 62.
    Mielke, S.L., Schwenke, D.W., and Peterson, K.A., Benchmark calculations of the complete configuration-interaction limit of Born–Oppenheimer diagonal corrections to the saddle points of isotopomers of the H + H[sub 2] reaction, J. Chem. Phys., 2005, vol. 122, p. 224313.CrossRefGoogle Scholar
  63. 63.
    Azumi, T. and Matsuzaki, K., What does term vibronic-coupling mean, Photochem. Photobiol., 1977, vol. 25, p. 315.CrossRefGoogle Scholar
  64. 64.
    Handy, N.C., Yamaguchi, Y., and Schaefer Iii, H.F., The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH[sub 2] and other molecular effects, J. Chem. Phys., 1986, vol. 84, p. 4481.CrossRefGoogle Scholar
  65. 65.
    Jensen, J.O. and Yarkony, D.R., On the evaluation of non-Born–Oppenheimer interactions for Born–Oppenheimer wave functions, V: A body fixed frame approach. Applications to isotope effects on equilibrium geometries and the adiabatic correction for the X [sup 1] Sigma [sup + ] state of LiH, J. Chem. Phys., 1988, vol. 89, p. 975.CrossRefGoogle Scholar
  66. 66.
    Valeev, E.F. and Sherrill, C.D., The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation, J. Chem. Phys., 2003, vol. 118, p. 3921.CrossRefGoogle Scholar
  67. 67.
    Gauss, J., Tajti, A., Kallay, M., Stanton, J.F., and Szalay, P.G., Analytic calculation of the diagonal Born–Oppenheimer correction within configuration-interaction and coupled-cluster theory, J. Chem. Phys., 2006, vol. 125, p. 144111.CrossRefGoogle Scholar
  68. 68.
    Werner, H.-J., Kallay, M., and Gauss, J. The barrier height of the F + H2 reaction revisited: Coupled-cluster and multireference configuration-interaction benchmark calculations, J. Chem. Phys., 2008, vol. 128, p. 034305/1.CrossRefGoogle Scholar
  69. 69.
    Mohallem, J.R., Coura, T.d.O., Diniz, L.G., De, C.G., Assafrao, D., and Heine, T., Adiabatic corrections to density functional theory energies and wave functions, J. Phys. Chem. A, 2008, vol. 112, p. 8896.CrossRefGoogle Scholar
  70. 70.
    Mohallem, J.R., Semiempirical evaluation of post- Hartree–Fock diagonal-Born–Oppenheimer corrections for organic molecules, J. Chem. Phys., 2008, vol. 128, p. 144113/1.CrossRefGoogle Scholar
  71. 71.
    Tajti, A., Szalay, P.G., and Gauss, J., Perturbative treatment of the electron-correlation contribution to the diagonal Born–Oppenheimer correction, J. Chem. Phys., 2007, vol. 127, p. 014102/1.CrossRefGoogle Scholar
  72. 72.
    Crawford, T.D., Sherrill, C.D., Valeev, E.F., Fermann, J.T., King, R.A., Leininger, M.L., Brown, S.T., Janssen, C.L., Seidl, E.T., Kenny, J.P., and Allen, W.D., PSI3: An open-source ab initio electronic structure package, J. Comput. Chem., 2007, vol. 28, p. 1610.CrossRefGoogle Scholar
  73. 73.
    Harding, M.E. and Klopper, W., Benchmarking the lithium-thiophene complex, Chem. Phys. Chem., 2013, vol. 14, p. 708.CrossRefGoogle Scholar
  74. 74.
    Przybytek, M. and Jeziorski, B., Long-range asymptotic expansion of the diagonal Born–Oppenheimer correction, Chem. Phys., 2012, vol. 401, p. 170.CrossRefGoogle Scholar
  75. 75.
    Pavanello, M., Adamowicz, L., Alijah, A., Zobov, N.F., Mizus, I.I., Polyansky, O.L., Tennyson, J., Szidarovszky, T., and Csaszar, A.G., Calibrationquality adiabatic potential energy surfaces for H3+ and its isotopologues, J. Chem. Phys., 2012, vol. 136, p. 184303/1.CrossRefGoogle Scholar
  76. 76.
    DeYonker, N.J. and Allen, W.D., Taming the lowlying electronic states of FeH, J. Chem. Phys., 2012, vol. 137, p. 234303/1.CrossRefGoogle Scholar
  77. 77.
    Bozkaya, U., Turney, J.M., Yamaguchi, Y., and Schaefer, H.F., III. The lowest-lying electronic singlet and triplet potential energy surfaces for the HNO–NOH system: Energetics, unimolecular rate constants, tunneling and kinetic isotope effects for the isomerization and dissociation reactions, J. Chem. Phys., 2012, vol. 136, p. 164303/1.CrossRefGoogle Scholar
  78. 78.
    Yachmenev, A., Yurchenko, S.N., Ribeyre, T., and Thiel, W., High-level ab initio potential energy surfaces and vibrational energies of H2CS, J. Chem. Phys., 2011, vol. 135, p. 074302/1.CrossRefGoogle Scholar
  79. 79.
    Rao, T.R. and Mahapatra, S., Nuclear motion on the orbitally degenerate electronic ground state of fully deuterated triatomic hydrogen, J. Chem. Phys., 2011, vol. 134, p. 204307/1.CrossRefGoogle Scholar
  80. 80.
    Meier, P., Neff, M., and Rauhut, G., Accurate vibrational frequencies of borane and its isotopologues, J. Chem. Theory Comput., 2011, vol. 7, p. 148.CrossRefGoogle Scholar
  81. 81.
    Lievin, J., Demaison, J., Herman, M., Fayt, A., and Puzzarini, C., Comparison of the experimental, semiexperimental and ab initio equilibrium structures of acetylene: Influence of relativistic effects and of the diagonal Born–Oppenheimer corrections, J. Chem. Phys., 2011, vol. 134, p. 064119/1.CrossRefGoogle Scholar
  82. 82.
    Holka, F., Szalay, P.G., Fremont, J., Rey, M., Peterson, K.A., and Tyuterev, V.G., Accurate ab initio determination of the adiabatic potential energy function and the Born–Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues, J. Chem. Phys., 2011, vol. 134, p. 094306/1.CrossRefGoogle Scholar
  83. 83.
    Klopper, W., Bachorz, R.A., Tew, D.P., and Hattig, C., Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne, Phys. Rev. A: At., Mol., Opt. Phys., 2010, vol. 81, p. 022503/1.CrossRefGoogle Scholar
  84. 84.
    Karton, A. and Martin, J.M.L., Performance of W4 theory for spectroscopic constants and electrical properties of small molecules, J. Chem. Phys., 2010, vol. 133, p. 144102.CrossRefGoogle Scholar
  85. 85.
    Bozkaya, U., Turney, J.M., Yamaguchi, Y., and Schaefer, H.F., III. The barrier height, unimolecular rate constant, and lifetime for the dissociation of HN2, J. Chem. Phys., 2010, vol. 132, p. 064308/1.CrossRefGoogle Scholar
  86. 86.
    Mielke, S.L., Schwenke, D.W., Schatz, G.C., Garrett, B.C., and Peterson, K.A., Functional representation for the Born–Oppenheimer diagonal correction and Born–Huang adiabatic potential energy surfaces for isotopomers of H3, J. Phys. Chem. A, 2009, vol. 113, p. 4479.CrossRefGoogle Scholar
  87. 87.
    Hobson, S.L., Valeev, E.F., Csaszar, A.G., and Stanton, J.F., Is the adiabatic approximation sufficient to account for the post-Born–Oppenheimer effects on molecular electric dipole moments?, Mol. Phys., 2009, vol. 107, p. 1153.CrossRefGoogle Scholar
  88. 88.
    Hirata, S., Miller, E.B., Ohnishi, Y.-y., and Yagi, K., On the validity of the Born–Oppenheimer separation and the accuracy of diagonal corrections in anharmonic molecular vibrations, J. Phys. Chem. A, 2009, vol. 113, p. 12461.CrossRefGoogle Scholar
  89. 89.
    Schwenke, D.W., Beyond the potential energy surface: Ab initio corrections to the Born–Oppenheimer approximation for H2O, J. Phys. Chem. A, 2001, vol. 105, p. 2352.CrossRefGoogle Scholar
  90. 90.
    Newton, M.D. and Sutin, N., Electron transfer reactions in condensed phases, Annu. Rev. Phys. Chem., 1984, vol. 35, p. 437.CrossRefGoogle Scholar
  91. 91.
    Jasper, A.W., Kendrick, B.K., Mead, C.A., and Truhlar, D.G., Non-Born–Oppenheimer chemistry: Potential surfaces, couplings, and dynamics, Adv. Ser. Phys. Chem., 2004, vol. 14, p. 329.Google Scholar
  92. 92.
    Lee, S.-H., Larsen, A.G., Ohkubo, K., Cai, Z.-L., Reimers, J.R., Fukuzumi, S., and Crossley, M.J., Long-lived long-distance photochemically induced spin-polarized charge separation in β,β'-pyrrolic fused ferrocene-porphyrin-fullerene systems, Chem. Sci., 2012, vol. 3, p. 257.CrossRefGoogle Scholar
  93. 93.
    Yin, S., Li, L., Yang, Y., and Reimers, J.R., Challenges for the accurate simulation of anisotropic charge mobilities through organic molecular crystals: The β phase of mer-Tris(8-hydroxyquinolinato)aluminum(III) (Alq3) crystal, J. Phys. Chem. C, 2012, vol. 116, p. 14826.CrossRefGoogle Scholar
  94. 94.
    Norton, J.E. and Brédas, J.L., Polarization energies in oligoacene semiconductor crystals, J. Am. Chem. Soc., 2008, vol. 130, p. 12377.CrossRefGoogle Scholar
  95. 95.
    Hush, N.S., Intervalence-transfer absorption, II: Theoretical considerations and spectroscopic data, Prog. Inorg. Chem., 1967, vol. 8, p. 391.Google Scholar
  96. 96.
    Kjaer, A.M. and Ulstrup, J., Solvent bandwidth dependence and band asymmetry features of chargetransfer transitions in N-pyridinium phenolates, J. Am. Chem. Soc., 1987, vol. 109, p. 1934.CrossRefGoogle Scholar
  97. 97.
    Reimers, J.R. and Hush, N.S., Electronic properties of transition-metal complexes determined from electro- absorption spectroscopy II mono-nuclear complexes of ruthenium(II), J. Phys. Chem., 1991, vol. 95, p. 9773.CrossRefGoogle Scholar
  98. 98.
    Reimers, J.R. and Hush, N.S., The effects of couplings to symmetric and antisymmetric modes and minor asymmetries on the spectral properties of mixed-valence and related charge-transfer systems, Chem. Phys., 1996, vol. 208, p. 177.CrossRefGoogle Scholar
  99. 99.
    Reimers, J.R. and Hush, N.S., Hamiltonian operators including both symmetric and antisymmetric vibrational modes for vibronic-coupling and intervalence charge-transfer applications, Chem. Phys., 2004, vol. 299, p. 79.CrossRefGoogle Scholar
  100. 100.
    Lockhart, D.J. and Boxer, S.G., Electric field modulation of the fluorescence spectrum from rhodobacter sphaeroides reaction centers, Chem. Phys. Lett., 1988, vol. 144, p. 243.CrossRefGoogle Scholar
  101. 101.
    Boxer, S.G., Goldstein, R.A., Lockhart, D.J., Middendorf, T.R., and Takiff, L., Excited states, electrontransfer reactions, and intermediates in bacterial photosynthetic reaction centers, J. Phys. Chem., 1989, vol. 93, p. 8280.CrossRefGoogle Scholar
  102. 102.
    Fried, S.D., Bagchi, S., and Boxer, S.G., Extreme electric fields power catalysis in the active site of ketosteroid isomerase, Science, 2014, vol. 346, p. 1510.CrossRefGoogle Scholar
  103. 103.
    Oh, D.H., Sano, M., and Boxer, S.G., Electroabsorption (Stark effect) spectroscopy of mono- and biruthenium charge-transfer complexes: measurements of changes in dipole moments and other electrooptic properties, J. Am. Chem. Soc., 1991, vol. 113, p. 6880.CrossRefGoogle Scholar
  104. 104.
    Cave, R.J. and Newton, M.D., Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements, Chem. Phys. Lett., 1996, vol. 249, p. 15.CrossRefGoogle Scholar
  105. 105.
    Hush, N.S., Discussion of “Electrode reactons of organic compounds: General Introduction” by R.A. Marcus, Discus. Faraday Soc., 1968, vol. 45, p. 52.CrossRefGoogle Scholar
  106. 106.
    Hammond, G.S., A correlation of reaction rates, J. Am. Chem. Soc., 1955, vol. 77, p. 334.CrossRefGoogle Scholar
  107. 107.
    Leffler, J.E., Parameters for the description of transition states, Science, 1953, vol. 117, p. 340.CrossRefGoogle Scholar
  108. 108.
    Toro-Labbe, A., Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness, J. Phys. Chem. A, 1999, vol. 103, p. 4398.CrossRefGoogle Scholar
  109. 109.
    Toro-Labbe, A., Gutierrez-Oliva, S., Murray, J.S., and Politzer, P., A new perspective on chemical and physical processes: The reaction force, Mol. Phys., 2007, vol. 105, p. 2619.CrossRefGoogle Scholar
  110. 110.
    Toro-Labbe, A., Gutierrez-Oliva, S., Murray, J.S., and Politzer, P., The reaction force and the transition region of a reaction, J. Mol. Model., 2009, vol. 15, p. 707.CrossRefGoogle Scholar
  111. 111.
    Politzer, P., Reimers, J.R., Murray, J.S., and Toro-Labbe, A., Reaction force and its link to diabatic analysis: A unifying approach to analyzing chemical reactions, J. Phys. Chem. Lett., 2010, vol. 1, p. 2858.CrossRefGoogle Scholar
  112. 112.
    Kanchanawong, O., Dahlbom, M.G., Treynor, T.P., Reimers, J.R., Hush, N.S., and Boxer, S.G., Charge delocalization in the special pair radical cation of mutant reaction centers of rhodobacter sphaeroides from stark spectra and non-adiabatic spectral simulations, J. Phys. Chem. B, 2006, vol. 110, p. 18688.CrossRefGoogle Scholar
  113. 113.
    Reimers, J.R. and Hush, N.S., Understanding the observed Stark spectra, midpoint potential versus degree of charge localization, and intervalence transition energies of the special-pair radical cation of Rhodobacter sphaeroides and its mutant strains, J. Am. Chem. Soc., 2004, vol. 126, p. 4132.CrossRefGoogle Scholar
  114. 114.
    Reimers, J.R. and Hush, N.S., Electric field perturbation of electronic (vibronic) absorption envelopes: Application to characterization of mixed-valence states, in Mixed Valence Systems: Applications in Chemistry, Physics, and Biology, Prassides, K., Dordrecht: Kluwer Acad. Publishers, 1991, p. 29.CrossRefGoogle Scholar
  115. 115.
    Franzen, S., Lao, K., and Boxer, S.G., Electric field effects on kinetics of electron transfer reactions: Connection between experiment and theory, Chem. Phys. Lett., 1992, vol. 197, p. 380.CrossRefGoogle Scholar
  116. 116.
    Landau, L.D., Z. Phys. Sowjetunion, 1932, vol. 2, p. 46.Google Scholar
  117. 117.
    Landau, L.D., Z. Phys. Sowjetunion, 1932, vol. 1, p. 88.Google Scholar
  118. 118.
    London, F., Ueber den Mechanismus der homöopolaren Bindung, in Probleme der Modernen Physik, Sommerfeld, A. and Debye, P., Leipzig: Hirsel, 1928, p. 104.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Physics and International Centre for Quantum and Molecular StructuresShanghai UniversityShanghaiChina
  2. 2.School of Mathematical and Physical SciencesUniversity of Technology SydneySydneyAustralia
  3. 3.School of Molecular BiosciencesThe University of SydneySydneyAustralia
  4. 4.School of ChemistryThe University of SydneySydneyAustralia

Personalised recommendations