Advertisement

Russian Journal of Electrochemistry

, Volume 53, Issue 2, pp 178–186 | Cite as

Neutron diffraction analysis of structural transformations in lithium-ion batteries

  • I. A. BobrikovEmail author
  • N. Yu. Samoylova
  • D. A. Balagurov
  • O. Yu. Ivanshina
  • O. A. Drozhzhin
  • A. M. Balagurov
Article

Abstract

The possibilities of using neutron diffraction in real-time studies of structural transformations occurring in crystalline functional materials during the action of external factors are discussed. As an example, the diffraction patterns are directly collected with 5-min resolution in the course of three charge–discharge cycles of a commercial lithium-ion battery (operando mode). It is shown that the analysis of spectrum evolution allows the main processes occurring in electrode materials to be characterized, namely, to identify the structural transformations, assess the fraction of material involved in the process, follow the kinetics and the degree of symmetry of charge–discharge processes, compare the structural transformations with the charge–discharge characteristic of the battery. The high-resolution neutron diffraction in combination with X-ray diffraction and X-ray spectral elemental analysis makes it possible to elucidate the structural type and composition of the working electrode and determine its microsctructural characteristics. Neutron diffraction is shown to be a powerful method often sufficient for studying structural transformations in complex multi-component objects.

Keywords

lithium-ion battery neutron diffraction in situ studies operando experiments 

References

  1. 1.
    Balagurov, A.M., Bobrikov, I.A., Samoylova, N.Yu., Drozhzhin, O.A., and Antipov, E.V., Russ. Chem. Rev., 2014, vol. 83, pp. 1120.CrossRefGoogle Scholar
  2. 2.
    Bobrikov, I.A., Balagurov, A.M., Hu, C.-W., Lee, C.-H., Chen, T.-Y., Sangaa, Deleg, and Balagurov, D.A., J. Power Sources, 2014, vol. 258, p. 356.CrossRefGoogle Scholar
  3. 3.
    Aksenov, V.L. and Balagurov, A.M., Usp. Fiz. Nauk, 1996, vol. 166, p. 955.CrossRefGoogle Scholar
  4. 4.
    Balagurov, A.M., Neutron News, 2005, vol. 16, pp. 8–12.CrossRefGoogle Scholar
  5. 5.
    Balagurov, A.M., Bobrikov, I.A., Bokuchava, G.D., Zhuravlev, V.V., and Simkin, V.G., Fiz. Elem. Chastits At. Yadra, 2015, no. 46, p. 453.Google Scholar
  6. 6.
    Zlokazov, V.B., Balagurov, D.A., Bobrikov, I.A., Samoylova, N.Yu., and Balagurov, A.M., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2017, vol. 11, p. 5.Google Scholar
  7. 7.
    Rodriguez-Carvajal, J., Phys. B., 1993, vol. 192, p. 55: https://www.ill.eu/sites/fullprof.CrossRefGoogle Scholar
  8. 8.
    Trucano, P. and Chen, R., Nature, 1975, vol. 258, pp. 136.CrossRefGoogle Scholar
  9. 9.
    Ohzuku, T., Iwakoshi, Y., and Sawai, K., J. Electrochem. Soc., 1993, vol. 140, p. 2490.CrossRefGoogle Scholar
  10. 10.
    Sharma, N., Peterson, V.K., Elcombe, M.M., Avdeev, M., Studer, A.J., Blagojevic, N., Yusoff, R., and Kamarulzaman, N., J. Power Sources, 2010, vol. 195, p. 8258.CrossRefGoogle Scholar
  11. 11.
    Senyshyn, A., Dolotko, O., Mühlbauer, M.J., Nikolowski, K., Fuess, H., and Ehrenberg, H., J. Electrochem. Soc., 2013, vol. 160, p. A3198.CrossRefGoogle Scholar
  12. 12.
    Shin, H.C., Chung, K.Y., Min, W.S., Byun, D.J., Jang, H., and Cho, B.W., Electrochem. Commun., 2008, vol. 10, p. 536.CrossRefGoogle Scholar
  13. 13.
    Drozhzhin, O.A., Sumanov, V.D., Karakulina, O.M., Abakumov, A.M., Hadermann, J., Baranov, A.N., Stevenson, K.J., and Antipov, E.V., Electrochim. Acta, 2016, vol. 191, p. 149.CrossRefGoogle Scholar
  14. 14.
    Yamada, H., Suzuki1, T.S., Uchikoshi, T., Hozumi, M., Sait, T., Toshiya Sait, and Sakka, Y., APL Mater., 2013, vol. 1, p. 042110.CrossRefGoogle Scholar
  15. 15.
    Shu, J., Ma, R., Shao, L., Shui, M., Wu, K., Lao, M., Wang, D., Long, N., and Ren, Y., J. Power Sources, 2014, vol. 245, p. 7.CrossRefGoogle Scholar
  16. 16.
    Noh, M. and Cho, J., J. Electrochem. Soc., 2013, vol. 160, p. A105.CrossRefGoogle Scholar
  17. 17.
    Xu, M., Chen, Z., Zhu, H., Yan, X., Li, L.J., and Zhao, Q., J. Mater. Chem. A, 2015, p. 1039. V. 3. P. 13933.Google Scholar
  18. 18.
    Warren, B.E. and Averbach, B.L., J. Appl. Phys., 1950, vol. 21, p. 595.CrossRefGoogle Scholar
  19. 19.
    Scardi, P. and Leoni, M., Acta Cryst., 2001, vol. A57, p. 604.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Bobrikov
    • 1
    • 2
    Email author
  • N. Yu. Samoylova
    • 1
  • D. A. Balagurov
    • 1
  • O. Yu. Ivanshina
    • 1
    • 3
  • O. A. Drozhzhin
    • 2
  • A. M. Balagurov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow regionRussia
  2. 2.Moscow State University, Department of ChemistryLeninskie Gory, MoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations