Russian Journal of Electrochemistry

, Volume 53, Issue 1, pp 8–15 | Cite as

Quinone based conducting redox polymers for electrical energy storage

  • R. Emanuelsson
  • C. Karlsson
  • H. Huang
  • C. Kosgei
  • M. Strømme
  • M. Sjödin
Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow, October 21–23, 2015), Part 2

Abstract

Conducting redox polymers (CRPs) constitute a promising class of materials for the development of organic matter based batteries with the potential to overcome the main limitations connected to this type of rechargeable battery systems including low conductivity and dissolution problems. In this report we show that the potential of quinones can be effectively tuned into the conducting region of polypyrrole (PPy), both in water based solutions and in acetonitrile, which is a prerequisite for profitable combination of the two units. We also present a device where both anode and cathode are made from PPy substituted with different quinone pendant groups and where good rate performance is achieved without any conductivity additives thus providing support for the hypothesized synergetic effect of a conducting polymer backbone and a covalently attached redox active pendant group. This device constitutes, to the best of our knowledge, the first all-CRP based battery reported to date.

Keywords

conducting redox polymers secondary batteries quinone proton coupled redox reactions pyridinium electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poizot, P. and Dolhem, F., En. Environ. Sci., 2011, vol. 4, p. 2003.CrossRefGoogle Scholar
  2. 2.
    Armand, M. and Tarascon, J.-M., Nature, 2008, vol. 451, p. 652.CrossRefGoogle Scholar
  3. 3.
    Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribière, P., Poizot, P., and Tarascon, J.-M., Nat. Mater., 2009, vol. 8, p. 120.CrossRefGoogle Scholar
  4. 4.
    Huskinson, B., Marshak, M.P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru-Guzik, A., Gordon, R.G., and Aziz, M.J., Nature, 2014, vol. 505, p. 195.CrossRefGoogle Scholar
  5. 5.
    Milczarek, G. and Inganäs, O., Science, 2012, vol. 335, p. 1468.CrossRefGoogle Scholar
  6. 6.
    Renault, S., Brandell, D., and Edström, K., Chem. Sus. Chem., 2014, vol. 7, p. 2859.CrossRefGoogle Scholar
  7. 7.
    Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K., and Nishide, H., Adv. Mater., 2009, vol. 21, p. 1627.CrossRefGoogle Scholar
  8. 8.
    Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M., Chem. Sus. Chem., 2008, vol. 1, p. 348.CrossRefGoogle Scholar
  9. 9.
    Arias-Pardilla, J., Otero, T.F., Blanco, R., and Segura, J.L., Electrochim. Acta, 2010, vol. 55, p. 1535.CrossRefGoogle Scholar
  10. 10.
    Casado, N., Hernández, G., Veloso, A., Devaraj, S., Mecerreyes, D., and Armand, M., ACS Macro Lett., 2016, vol. 5, p. 59.CrossRefGoogle Scholar
  11. 11.
    Liang, Y., Chen, Z., Jing, Y., Rong, Y., Facchetti, A., and Yao, Y., J. Am. Chem. Soc., 2015, vol. 137, p. 4956CrossRefGoogle Scholar
  12. 12.
    Otero, T.F., Arias-Pardilla, J., Herrera, H., and Segura, J.L., and Seoane, C., PCCP, 2011, vol. 13, p. 16513.CrossRefGoogle Scholar
  13. 13.
    Aydın, M., Esat, B., Kılıç, Ç., Köse, M.E., Ata, A., and Yılmaz, F., Eur. Polym. J., 2011, vol. 47, p. 2283.CrossRefGoogle Scholar
  14. 14.
    Su, C., Yang, F., Xu, L., Zhu, X., He, H., and Zhang, C., Chem. Plus. Chem., 2015, vol. 80, p. 606.Google Scholar
  15. 15.
    Conte, S., Rodriguez-Calero, G.G., Burkhardt, S.E., Lowe, M.A., and Abruna, H.D., RSC Adv., 2013, vol. 3, p. 1957.CrossRefGoogle Scholar
  16. 16.
    Rosciano, F., Salamone, M.M., Ruffo, R., Sassi, M., and Beverina, L., J. Electrochem. Soc., 2013, vol. 160, p. A1094.Google Scholar
  17. 17.
    Oyaizu, K., Tatsuhira, H., and Nishide, H., Polym. J., 2015, vol. 47, p. 212.CrossRefGoogle Scholar
  18. 18.
    Chen, H., Armand, M., Courty, M., Jiang, M., Grey, C.P., Dolhem, F., Tarascon, J.-M., and Poizot, P., J. Am. Chem. Soc., 2009, vol. 131, p. 8984.CrossRefGoogle Scholar
  19. 19.
    Zotti, G., Synth. Met., 1998, vol. 97, p. 267.CrossRefGoogle Scholar
  20. 20.
    Ahonen, H.J., Lukkari, J., and Kankare, J., Macromolecules, 2000, vol. 33, p. 6787.CrossRefGoogle Scholar
  21. 21.
    Yang, L., Huang, X., Gogoll, A., Strømme, M., and Sjödin, M., J. Phys. Chem. C, 2015, vol. 119, p. 18956.CrossRefGoogle Scholar
  22. 22.
    Sezer, E., Skompska, M., and Heınze, J., Electrochim. Acta, 2008, vol. 53, p. 4958.CrossRefGoogle Scholar
  23. 23.
    Paul, E.W., Ricco, A.J., and Wrighton, M.S., J. Phys. Chem., 1985, vol. 89, p. 1441.CrossRefGoogle Scholar
  24. 24.
    Ofer, D., Crooks, R.M., and Wrighton, M.S., J. Am. Chem. Soc., 1990, vol. 112, p. 7869.CrossRefGoogle Scholar
  25. 25.
    Liang, Y., Tao, Z., and Chen, J., Adv. Energy Mater., 2012, vol. 2, p. 742.CrossRefGoogle Scholar
  26. 26.
    Trasatti, S. and Petrii, O.A., J. Electroanal. Chem., 1992, vol. 327, p. 353.CrossRefGoogle Scholar
  27. 27.
    Haynes, W.M., Lide, D.R., and Bruno, T.J., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, Press, C.R.C., 2013.Google Scholar
  28. 28.
    Kittlesen, G.P., White, H.S., and Wrighton, M.S., J. Am. Chem. Soc., 1984, vol. 106, p. 7389.CrossRefGoogle Scholar
  29. 29.
    Shu, C.F. and Wrighton, M.S., J. Phys. Chem., 1988, vol. 92, p. 5221.CrossRefGoogle Scholar
  30. 30.
    Thackeray, J.W., White, H.S., and Wrighton, M.S., J. Phys. Chem., 1985, vol. 89, p. 5133.CrossRefGoogle Scholar
  31. 31.
    Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., Electrochim. Acta, 2015, vol. 179, p. 336.CrossRefGoogle Scholar
  32. 32.
    Gan, X., Jiang, W., Wang, W., and Hu, L., Org. Lett., 2009, vol. 11, p. 589.CrossRefGoogle Scholar
  33. 33.
    Viault, G., Grée, D., Das, S., Yadav, J.S., and Grée, R., Eur. J. Org. Chem., 2011, vol. 2011, p. 1233.CrossRefGoogle Scholar
  34. 34.
    Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., RSC Adv., 2015, vol. 5, p. 11309.CrossRefGoogle Scholar
  35. 35.
    Yao, M., Senoh, H., Araki, M., Sakai, T., and Yasuda, K., ECS Trans., 2010, vol. 28, p. 3.CrossRefGoogle Scholar
  36. 36.
    Senoh, H., Yao, M., Sakaebe, H., Yasuda, K., and Siroma, Z., Electrochim. Acta, 2011, vol. 56, p. 10145.CrossRefGoogle Scholar
  37. 37.
    Trefz, T., Kabir, M.K., Jain, R., Patrick, B.O., and Hicks, R.G., Can. J. Chem., 2014, vol. 92, p. 1010.CrossRefGoogle Scholar
  38. 38.
    Finklea, H.O., Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd., 2006.Google Scholar
  39. 39.
    Haddox, R.M. and Finklea, H.O., J. Phys. Chem. B, 2004, vol. 108, p. 1694.CrossRefGoogle Scholar
  40. 40.
    Marsella, M.J., Newland, R.J., Carroll, P.J., and Swager, T.M., J. Am. Chem. Soc., 1995, vol. 117, p. 9842.CrossRefGoogle Scholar
  41. 41.
    Sheberla, D., Patra, S., Wijsboom, Y.H., Sharma, S., Sheynin, Y., Haj-Yahia, A.-E., Barak, A.H., Gidron, O., and Bendikov, M., Chem. Sci., 2015, vol. 6, p. 360.CrossRefGoogle Scholar
  42. 42.
    Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., J. Phys. Chem. C, 2013, vol. 117, p. 23558.CrossRefGoogle Scholar
  43. 43.
    Karlsson, C., Huang, H., Strømme, M., Gogoll, A., and Sjödin, M., J. Electroanal. Chem., 2014, vol. 735, p. 95.CrossRefGoogle Scholar
  44. 44.
    Karlsson, C., Gogoll, A., Strømme, M., and Sjödin, M., J. Phys. Chem. C, 2013, vol. 117, p. 894.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. Emanuelsson
    • 1
  • C. Karlsson
    • 1
  • H. Huang
    • 1
  • C. Kosgei
    • 1
  • M. Strømme
    • 1
  • M. Sjödin
    • 1
  1. 1.Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations