Skip to main content
Log in

Comparison of characteristics of solid oxide fuel cells with YSZ and CGO film solid electrolytes formed using magnetron sputtering technique

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The work describes the methods of manufacturing single cells of solid oxide fuel cell (SOFC) with thin–film YSZ and CGO electrolytes and also with the bilayer YSZ/CGO electrolyte. Formation of YSZ and CGO films on the supporting NiO–YSZ anode of SOFC was carried out using the combined electron–ionic–plasma deposition technique. The microstructure and phase composition of the formed coatings are studied and also comparative analysis of electrochemical characteristics of single fuel cells with different electrolytes is performed. It is shown that the maximum power density of 1.35 W/cm2 at the temperature of 800°C is obtained for the cell with bilayer YSZ/CGO electrolyte. However, the highest performance at lower working temperatures (650–700°C) is characteristic for the fuel cell with single–layer CGO electrolyte; its power density is 600–650 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kek, D., Panjan, P., Wanzenberg, E., and Jamnik, J., J.Eur. Ceram. Soc., 2001, vol. 21, p. 1861.

    Article  CAS  Google Scholar 

  2. Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C.S., Pennycook J., and Santamaria, J., Science, 2008, vol. 321, p. 676.

    Article  CAS  Google Scholar 

  3. Hobein, B., Tietz, F., Stover, D., Cekada, M., and Panjan, P., J.Eur. Ceram. Soc., 2001, vol. 21, p. 1843.

    Article  CAS  Google Scholar 

  4. Wang, Z., Cheng, M., Dong, Y., Zhang, M., and Zhang, H., J.Power Sources, 2006, vol. 156, p. 306.

    Article  CAS  Google Scholar 

  5. Qiu, L., Ichikawa, T., Hirano, A., Imanishi, N., and Takeda, Y., Solid State Ionics, 2003, vol. 158, nos. 1–2, p. 55.

    Article  CAS  Google Scholar 

  6. Marinha, D., Hayd, J., Dessemond, L., Ivers-Tiffee, E., and Djurado, E., J.Power Sources, 2011, vol. 196, p. 5084.

    Article  CAS  Google Scholar 

  7. Ni, D.W. and Esposito, V., J.Power Sources, 2014, vol. 266, p. 393.

    Article  CAS  Google Scholar 

  8. Sonderby, S., Klemenso, T., Christensen, B.H., Almtoft, K.P., Lu, J., Nielsen, L.P., and Eklund, P., J.Power Sources, 2014, vol. 267, p. 452.

    Article  Google Scholar 

  9. Constantin, G., Rossignol, C., Briois, P., Billard, A., Dessemond, L., and Djurado, E., Solid State Ionics, 2013, vol. 249–250, p. 98.

    Article  Google Scholar 

  10. Jordan, N., Assenmacher, W., Uhlenbruck, S., Haanappel, V.A.C., Buchkremer, H.P., Stover, D., and Mader, W., Solid State Ionics, 2008, vol. 179, p. 919.

    Article  CAS  Google Scholar 

  11. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Solid State Ionics, 2004, vol. 174, nos. 1–4, p. 135.

    Article  CAS  Google Scholar 

  12. Kuo, Y.L., Chen, Y.S., and Lee, C., J.Eur. Ceram. Soc., 2011, vol. 31, p. 3127.

    Article  CAS  Google Scholar 

  13. Laukaitis, G. and Dudonis, J., J.Alloys Compd., 2008, vol. 459, p. 320.

    Article  CAS  Google Scholar 

  14. Pryds, N., Rodrigo, K., Linderoth, S., and Schou, J., Appl. Surface Sci., 2009, vol. 255, p. 5232.

    Article  CAS  Google Scholar 

  15. Uhlenbruck, S., Moskalewicz, T., Jordan, N., Penkalla, H.-J., and Buchkremer, H.P., Solid State Ionics, 2009, vol. 180, p. 418.

    Article  CAS  Google Scholar 

  16. Uhlenbruck, S., Jordan, N., Sebold, D., Buchkremer, H.P., Haanappel, V.A.C., and Stover, D., Thin Solid Films, 2007, vol. 515, p. 4053.

    Article  CAS  Google Scholar 

  17. Wu, W., Liu, Z., Zhao, Z., Zhang, X., Ou, D., Tu, B., Cui, D., and Cheng, M., Chin. J. Catal., 2014, vol. 35, p. 1376.

    Article  CAS  Google Scholar 

  18. Sochugov, N.S., Soloviev, A.A., Shipilova, A.V., and Rotshtain, V.P., Intern. J. Hydrogen Energy, 2011, vol. 36, p. 5550.

    Article  CAS  Google Scholar 

  19. Solovyev, A.A., Sochugov, N.S., Shipilova, A.V., Efimova, K.B., and Tumashevskaya, A.E., Russ. J. Electrochem., 2011, vol. 47, p. 494.

    Article  Google Scholar 

  20. Choi, H., Cho, G.Y., and Cha, S.W., Int. J. Precis. Eng. Manuf. Green Technol., 2014, vol. 1, p. 95.

    Article  Google Scholar 

  21. Fonseca, F.C., Uhlenbruck, S., Nedelec, R., Sebold, D., and Buchkremer, H.P., J.Electrochem. Soc., 2010, vol. 157, p. 1515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Solov’ev.

Additional information

Original Russian Text © A.A. Solov’ev, A.V. Shipilova, A.N. Koval’chuk, I.V. Ionov, S.V. Rabotkin, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 7, pp. 741–748.

Published on the basis of the materials of III All-Russia Conference “Fuel Cells and Power Plants on Their Basis,” Chernogolovka, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, A.A., Shipilova, A.V., Koval’chuk, A.N. et al. Comparison of characteristics of solid oxide fuel cells with YSZ and CGO film solid electrolytes formed using magnetron sputtering technique. Russ J Electrochem 52, 662–668 (2016). https://doi.org/10.1134/S102319351607017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351607017X

Keywords

Navigation