Advertisement

Russian Journal of Electrochemistry

, Volume 50, Issue 11, pp 1085–1089 | Cite as

Interpretation of the Esin-Markov effect in terms of the Frumkin isotherm with the linear dependence of the adsorption energy on the electrode charge

  • B. B. Damaskin
Short Communications
  • 100 Downloads

Abstract

A phenomenological approach towards description of the Esin-Markov effect is developed based on the Frumkin isotherm in which the adsorption energy is a linear function of the electrode charge. It is shown that in this case, the discreteness factor λ found from the limiting slope of the dependence of the zero charge potential on the logarithm of surface-active anion concentration agrees with the value of λ obtained based on the dependence of the surface excess of cations on the electrode charge q at high positive q values. The expressions derived to describe the relationship between the discreteness factor and the adsorption parameters of Frumkin isotherm are used in interpretation of the discreteness effects at the adsorption of Cl, Br, and I anions on interfaces of liquid electrodes based on Ga and alloys In-Ga and Tl-Ga with the solutions of salts in N-methylformamide.

Keywords

Esin-Markov effect Frumkin isotherm specific adsorption of Cl, Br, and I anions interfaces Ga/N-methylformamide (In-Ga)/N-methylformamide (Tl-Ga)/N-methylformamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frumkin, A.N., Usp. Khim., 1935, vol. 4, p. 967.Google Scholar
  2. 2.
    Stern, O., Z. Elektrochem., 1924, vol. 30, p. 508.Google Scholar
  3. 3.
    Esin, O.A. and Markov, B.F., Zh. Fiz. Khim., 1939, vol. 13, p. 318.Google Scholar
  4. 4.
    Grahame, D.C., Z. Elektrochem., 1958, vol. 62, p. 264.Google Scholar
  5. 5.
    Damaskin, B.B. and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vyssh. shk, 1983.Google Scholar
  6. 6.
    Grahame, D.C. and Parsons, R., J. Am. Chem. Soc., 1961, vol. 83, p. 1291.CrossRefGoogle Scholar
  7. 7.
    Krylov, V.S., in Osnovnye voprosy sovrem. teoret. elektrokhimii (Fundamental Problems of Modern Theoretical Electrochemistry), Moscow: Mir, 1965, p. 217.Google Scholar
  8. 8.
    Levins, S., Mingins, J., and Bell, G.M., J. Electroanal. Chem., 1967, vol. 13, p. 280.CrossRefGoogle Scholar
  9. 9.
    Macdonald, J.R., J. Electroanal. Chem., 1987, vol. 223, p. 1.CrossRefGoogle Scholar
  10. 10.
    Alekseev, Yu.V., Popov, Yu.A., and Kolotyrkin, Ya.M., Elektrokhimiya, 1976, vol. 12, p. 907.Google Scholar
  11. 11.
    Damaskin, B.B. and Baturina, O.A., Russ. J. Electrochem., 1999, vol. 35, p. 499.Google Scholar
  12. 12.
    Frumkin, A.N., Z. Phys. Chem. (Munich), 1925, vol. 116, p. 466.Google Scholar
  13. 13.
    Sanz, F. and Gonzalez, R., Electrochim. Acta, 1989, vol. 34, p. 1883.CrossRefGoogle Scholar
  14. 14.
    Damaskin, B.B., Safonov, V.A., and Emets, V.V., Russ. J. Electrochem., 2013, vol. 49, p. 341.Google Scholar
  15. 15.
    Damaskin, B.B., Safonov, V.A., and Emets, V.V., Russ. J. Electrochem., 2012, vol. 48, p. 911.CrossRefGoogle Scholar
  16. 16.
    Damaskin, B.B., Safonov, V.A., and Emets, V.V., Russ. J. Electrochem, 2013, vol. 49, p. 441.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations