Advertisement

Russian Journal of Electrochemistry

, Volume 50, Issue 4, pp 301–316 | Cite as

Hydrogen-halogen electrochemical cells: A review of applications and technologies

  • Yu. V. TolmachevEmail author
Article

Abstract

Described herein are established and emerging applications of hydrogen-halogen direct and regenerative fuel cells such as energy recovery from excess H2 and Cl2 products of chloro-alkali electrolysis as well as stationary and on-board energy storage. Due to significant similarities between hydrogen-halogen fuel cells and electrolyzers, the latter are also discussed. This is followed by a more detailed description of various designs classified on the basis of their electrolytes: aqueous solutions, ionomers, phosphoric acid doped polybenzimidazole, halide melts and others. It is concluded that hydrogen-chlorine and hydrogen-bromine cells may present competitive options for on-board and grid energy storage. However, the choice of the most suitable electrolyte for such cells cannot be made at present and more studies of complete systems, particularly with ionomers and solid acid electrolytes, would be desirable.

Keywords

hydrogen-halogen electrochemical cells fuel cells flow-through batteries gas batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Brien, T.F., Bommaraju, T.V., and Hine, F., Handbook of Chlor-Alkali Technology, Springer: New York: Springer, 2005.Google Scholar
  2. 2.
    Yoshizawa, S. and Takehara, Z., J. Appl. Electrochem., 1971, vol. 1, p. 245.CrossRefGoogle Scholar
  3. 3.
    Yeo, R.S., Jörissen, M., Tseung, A.C.C., and Srinivasan, S., An electrochemical regenerative hydrogenchlorine energy storage system: electrode kinetics and storage system, J. Appl. Electrochem., 1980, vol. 10, pp. 393–404.CrossRefGoogle Scholar
  4. 4.
    Eames, D.J. and Newman, J., Electrochemical conversion of anhydrous HCl to Cl2 using a solid-polymer-electrolyte electrolysis cell, J. Electrochem. Soc., 1995, vol. 142, pp. 3619–3625.CrossRefGoogle Scholar
  5. 5.
    Trainham, J.A., Law, C.G., Newman, J.S., Keating, K.B., and Eames, D.J., US Patent 5441641 1995.Google Scholar
  6. 6.
    Ding, Y. and Winnick, J., Electrolytic recovery of chlorine from hydrogen chloride gas with fused molten salt electrolyte LiCl/KCl, J. Appl. Electrochem., 1996, vol. 26, pp. 143–146.CrossRefGoogle Scholar
  7. 7.
    Trainham, J.A., Law, C.G., Newman, J.S., Keating, K.B., and Eames, D.J., US Patent 5580437, 1996.Google Scholar
  8. 8.
    Wauters, C.N. and Winnick, J., Recovery of bromine from waste gas-phase hydrogen bromide streams using an electrolytic membrane, J. Electrochem. Soc., 1996, vol. 143, pp. L184–L185.CrossRefGoogle Scholar
  9. 9.
    Winnick, J., US Patent 5618405, 1997.Google Scholar
  10. 10.
    Winnick, J., US Patent 5928489, 1999.Google Scholar
  11. 11.
    Motupally, S., Mah, D.T., Freire, F.F., and Weidner, J.W., Recycling chlorine from hydrogen chloride: a new and economical electrolytic process, Interface, 1998, no. Fall, pp. 32–36.Google Scholar
  12. 12.
    Trainham, J.A., Law, C.G., and Newman, J.S., US Patent 5580437, 2000.Google Scholar
  13. 13.
    Sarangapani, S. and Bommaraju, T., US Patent 6203692, 2001.Google Scholar
  14. 14.
    Trainham, J.A., Law, C.G., and Newman, J.S., US Patent RE37042E, 2001.Google Scholar
  15. 15.
    Zimmerman, W.H., Trainham, J.A., Law, C.G., and Newman, J.S., US Patent RE37433, 2001.Google Scholar
  16. 16.
    Zimmerman, W.H., Trainham, J.A., Law, C.G., and Newman, J.S., US Patent 6203675, 2001.Google Scholar
  17. 17.
    Cisar, A.J., Gonzalez-Martin, A., Hitchens, G.D., and Murphy, O.J., US Patent 6183623 B1, 2001.Google Scholar
  18. 18.
    Bartling, J. and Winnick, J., Chlorine recovery from anhydrous hydrogen chloride in a molten salt electrolyte membrane cell, J. Electrochem. Soc., 2003, vol. 150, pp. D99–D107.CrossRefGoogle Scholar
  19. 19.
    Thomassen, M., Borresen, B., Scott, K., and Tunold, R., A computational simulation of a hydrogen/chlorine single fuel cell, J. Power Sources, 2006, vol. 157, pp. 271–283.CrossRefGoogle Scholar
  20. 20.
    Thomassen, M., Karlsen, C., Borresen, B., and Tunold, R., Kinetic investigation of the chlorine reduction reaction on electrochemically oxidised ruthenium, Electrochim. Acta, 2006, vol. 51, pp. 2909–2918.CrossRefGoogle Scholar
  21. 21.
    Sivasubramanian, P., Ramasamy, R.P., Freire, F.J., Holland, C.E., and Weidner, J.W., Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 463–468.CrossRefGoogle Scholar
  22. 22.
    Grosso, P., McFarland, E.W., and Sherman, J.H., US Patent 2008/0314758 A1, 2008.Google Scholar
  23. 23.
    Park, J.S., Chen, C., Wieder, N.L., Vohs, J.M., and Gorte, R.J., Electrolysis of HBr using molten, alkalibromide electrolytes, Electrochim. Acta, 2011, vol. 56, pp. 1581–1584.CrossRefGoogle Scholar
  24. 24.
    Johnson, J. and Winnick, J., Electrochemical membrane separation of chlorine from gaseous hydrogen chloride waste, Separation Purification Technol., 1999, vol. 15, pp. 223–229.CrossRefGoogle Scholar
  25. 25.
    Freire, F.J., Fahy, E.J., Mah, D.T., Keating, K.B., Eames, D.J., Zimmerman, W.H., Trainham, J.A., Law, C.G., and Newman, J.S., US Patent 5 976 346, 1999.Google Scholar
  26. 26.
    Motupally, S., Becker, A.J., and Weidner, J.W., Water transport in polymer electolyte membrane electrolyzers used to recycle anhydrous HCl, J. Electrochem. Soc., 2002, vol. 149, pp. D63–D71.CrossRefGoogle Scholar
  27. 27.
    Zhang, R. and Weidner, J.W., Analysis of a gas-phase Br(2)-H(2) redox flow battery, J. Appl. Eiectrochem., 2011, vol. 41, pp. 1245–1252.CrossRefGoogle Scholar
  28. 28.
    Thomassen, M., Borresen, B., Hagen, G., and Tunold, R., Chlorine reduction on platinum and ruthenium: the effect of oxide coverage, Electrochim. Acta, 2005, vol. 50, pp. 1157–1167.CrossRefGoogle Scholar
  29. 29.
    Thomassen, M., Sandnes, E., Borresen, B., and Tunold, R., Evaluation of concepts for hydrogenchlorine fuel cells, J. Appl. Electrochem., 2006, vol. 36, pp. 813–819.CrossRefGoogle Scholar
  30. 30.
    Thomassen, M., Børresen, B., Hagen, G., and Tunold, R., H2/Cl2 fuel cell for co-generation of electricity and HCl, J. Appl. Electrochem., 2003, vol. 33, pp. 9–13.CrossRefGoogle Scholar
  31. 31.
    Thomassen, M.S., Hydrogen-Chlorine Fuel Cell for Production of Hydrochloric Acid and Electric Power, Norwegian University of Science and Technology, 2005.Google Scholar
  32. 32.
    Gestermann, F., US Patent 6368490B1, 2002.Google Scholar
  33. 33.
    Mohammadi, F., Ashrafizadeh, S.N., and Sattari, A., Aqueous HCl electrolysis utilizing an oxygen reducing cathode, Chem. Eng. J., 2009, vol. 155, pp. 757–762.CrossRefGoogle Scholar
  34. 34.
    Coker, T.G., Dempsey, R.M., and LaConti, A.B., US Patent 4191618, 1980.Google Scholar
  35. 35.
    Faita, G., US Patent 5777035, 1998.Google Scholar
  36. 36.
    Neumannspalfart, M. and Kalyanasundaram, K., Photoelectrochemical cells for the oxidation of water and bromide ions by visible-light, Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys., 1981, vol. 85, pp. 704–709.CrossRefGoogle Scholar
  37. 37.
    Ang, P.G.P. and Sammells, A.F., n-MoSe2 photochemical storage cell, J. Electrochem. Soc., 1982, vol. 129, pp. 233–235.CrossRefGoogle Scholar
  38. 38.
    Grantham, D.H., US Patent 4203814, 1978.Google Scholar
  39. 39.
    Grantham, D.H., US Patent 4218301, 1980.Google Scholar
  40. 40.
    Gooding, C.H., Analysis of alternative flow sheets for the hybrid chlorine cycle, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 4168–4178.CrossRefGoogle Scholar
  41. 41.
    Schuetz, G.H., Hydrogen producing cycles using electricity and heat-hydrogen halide cycles: electrolysis for HBr, Int. J. Hydrogen Energy, 1977, vol. 1, pp. 379–388.CrossRefGoogle Scholar
  42. 42.
    Schuetz, G.H. and Fiebelman, P.J., Electrolysis of Hydrobromic acid, Int. J. Hydrogen Energy, 1980, vol. 5, pp. 305–316.CrossRefGoogle Scholar
  43. 43.
    Schuetz, G.H., Recent Advances and possible improvements in the electrolysis of HBr, Hydrogen Energy Progress, 1982, vol. 4, pp. 493–504.Google Scholar
  44. 44.
    Gelb, A.H., US Patent 5041197, 1991.Google Scholar
  45. 45.
    Shibli, S.M.A. and Noel, M., Platinum iridium bimetal catalyst-based porous carbon electrodes for H2-Cl2 fuel-cells, Int. J. Hydrogen Energy, 1993, vol. 18, pp. 141–147.CrossRefGoogle Scholar
  46. 46.
    Stedman, J.K., US Patent 3 981 745, 1976.Google Scholar
  47. 47.
    Kim, J.T. and Jorne, J., Kinetics of a chlorine graphite electrode in zinc-chlorine battery, J. Electrochem. Soc., 1977, vol. 124, pp. 1473–1477.CrossRefGoogle Scholar
  48. 48.
    Symons, P.C. and Warde C.J., Zinc-chlorine batteries for load leveling, J. Electrochem. Soc., 1977, vol. 124, pp. C278–C278.Google Scholar
  49. 49.
    Maricle, D.L., US Patent 4128701, 1978.Google Scholar
  50. 50.
    Chin, D.T., Yeo, R.S., McBreen, J., and Srinivasan, S., Electrochemically regenerative hydrogen-chlorine energy-storage system-study of mass and heat balances, J. Electrochem. Soc., 1979, vol. 126, pp. 713–720.CrossRefGoogle Scholar
  51. 51.
    Yeo, R.S. and Chin, D.T., Hydrogen-bromine cell for energy-storage applications, J. Electrochem. Soc., 1980, vol. 127, pp. 549–555.CrossRefGoogle Scholar
  52. 52.
    Yeo, R.S., McBreen, J., Tseung, A.C.C., Srinivasan, S., and McElroy, J., An clectrochemically regenerative hydrogen-chlorine energy-storage system—electrode-kinetics and cell performance, J. Appl. Electrochem., 1980, vol. 10, pp. 393–404.CrossRefGoogle Scholar
  53. 53.
    Srinivasan, S., Fuel-cells for electric utility and transportation applications, J. Electroanal. Chem., 1981, vol. 118, pp. 51–69.CrossRefGoogle Scholar
  54. 54.
    Barna, G.C., Frank, S.N., and Teherani, T.H., Oxidation of H2 at gas diffusion electrode in H2SO4 and HBr, J. Electrochem. Soc., 1982, vol. 129, pp. 2464–2468.CrossRefGoogle Scholar
  55. 55.
    Macdonald, F.J. and Fletcher, E.A., Solar-energy storage as H2 and Br2 from HBr2, performance of an idealized system, Energy, 1982, vol. 7, pp. 953–960.CrossRefGoogle Scholar
  56. 56.
    Jorne, J., Flow batteries, Am. Sci., 1983, vol. 71, pp. 507–513.Google Scholar
  57. 57.
    Barna, G.G., Frank, S.N., Teherani, T.H., and Weedon, L.D., Lifetime studies in H2/Br2 fuel cells, J. Electrochem. Soc., 1984, vol. 131, pp. 1973–1980.CrossRefGoogle Scholar
  58. 58.
    Parker, R. and Clapper, W.L., Hydrogen-based utility energy storage system, DOE Hydrogen Program Rev., 2001, vol. NREL/CP-570-30535.Google Scholar
  59. 59.
    Molter, T.M., SBIR Phase II: Development of Hydrogen/Halogen Fuel Cell Technology for Renewables Based Energy Storage. NSF: 114 Harvest Lane Glastonbury, CT 06033, 2009.Google Scholar
  60. 60.
    Rugolo, J.B.H. and Aziz, M.J., Model of Performance of a Regenerative Hydrogen Chlorine Fuel Cell for Grid-Scale Electrical Energy Storage, 2010.Google Scholar
  61. 61.
    Yang, Z., Liu, J., Baskaran, S., Imhoff, C.H., and Holladay, J.D., Enabling renewable energy-and the future grid-with advanced electricity storage, J. Met., 2010, vol. 62, pp. 14–23.Google Scholar
  62. 62.
    Hanrahan, R.J., Heaton, H.L., and Parker, R.Z., US Patent 5833834, 1998.Google Scholar
  63. 63.
    Rugolo, J. and Aziz, M.J., Electricity Storage for Intermittent Renewable Sources, 2011.Google Scholar
  64. 64.
    Soloveichik, G.L., Battery Technologies for Large-Scale Stationary Energy Storage, in Annual Review of Chemical and Biomolecular Engineering, vol. 2, Prausnitz, J.M., Ed., Annual Reviews: Palo Alto, 2011, vol. 2, pp. 503–527.Google Scholar
  65. 65.
    Wilson, M., Berkeley Lab Research Helps Fuel Cells Meet Their Potential.Google Scholar
  66. 66.
    Lewis, N., Powering the planet, MRS Bull., 2007, vol. 32, pp. 808–820.CrossRefGoogle Scholar
  67. 67.
    Sarah Lichtner, R.B., Lindsay Kishter, Lindsay Pack, and Warren Hunt, Advanced Materials and Devices for Stationary Electrical Energy Storage Applications, Sandia National Laboratories, Pacific Northwest National Laboratory, The Minerals, Metals & Materials Society (TMS), 2010.Google Scholar
  68. 68.
    ElectroChem, I., Novel Concepts for Hydrogen-Bromine Battery, NSF SBIR: 400 West Cummings Park Woburn, MA 01801-1046, 1989.Google Scholar
  69. 69.
    Mitlitsky, F.B.M. and Weisberg, A.H., Regenerative fuel cell systems, Energy Fuels, 1998, vol. 12, pp. 56–71.CrossRefGoogle Scholar
  70. 70.
    (NRC), N.M. and A.B., Assessment of Research Needs for Advanced Battery Systems, 1982.Google Scholar
  71. 71.
    Howell, D., 2011 Annual Merit Review and Peer Evaluation Meeting: Energy Storage R&D., 2011.Google Scholar
  72. 72.
    Livshits, V., Ulus, A., and Peled, E., High-power H2/Br2 fuel cell, Electrochem. Comm., 2006, vol. 8, pp. 1358–1362.CrossRefGoogle Scholar
  73. 73.
    Sujit, K., Mondal, J.R., and Aziz, M.J., Alloy oxide electrocatalysts for regenerative hydrogen-halogen fuel cell, Mater. Res. Soc. Symp., 2010, vol. GG10.9, p. 1311.Google Scholar
  74. 74.
    Savinell, R.F. and Fritts, S.D., Theoretical and Experimental Flow Cell Studies of a Hydrogen-Bromine Fuel Cell, University of Akron, 1986.Google Scholar
  75. 75.
    Maricle, D.L., US Patent 4129683, 1978.Google Scholar
  76. 76.
    Frank, S.N., US Patent 4218519, 1980.Google Scholar
  77. 77.
    Parker, R.Z., Hanrahan, R.J., and Gupta, A.K., US Patent 5219671, 1993.Google Scholar
  78. 78.
    Gupta, A.K., Parker, R.Z., and Hanrahan, R.J., Solar-assisted production of hydrogen and chlorine from hydrochloric-acid using hexachloroiridate(III) and (IV), Int. J. Hydrogen Energy, 1998, vol. 18, pp. 713–718.CrossRefGoogle Scholar
  79. 79.
    Nielsen, K., The Energizer, Miami New Times, August 2000.Google Scholar
  80. 80.
    Goor-Dar, M., Travitsky, N., and Peled, E., Study of hydrogen redox reactions on platinum nanoparticles in concentrated HBr solutions, J. Power Sources, 2012, vol. 197, pp. 111–115.CrossRefGoogle Scholar
  81. 81.
    Peled, E. and Blum, A., Electrochemical system used as fuel cell e.g. hydrogen fuel cell to power airborne vehicle comprises electrical energy source and energy storage system having regenerative fuel cell system having stacks of regenerative fuel cells, Univ Ramot at Tel Aviv Ltd.Google Scholar
  82. 82.
    Peled, E., Blum, A., Aharon, A., Konra, Y., Zel, V., and Saadi, K., Bipolar plate useful in a regenerative fuel cell stack, comprises a plate main body formed of an electrically conductive material, manifolds formed on the plate main body in the form of an inlet and an outlet, and connection channels, Univ. Ramot at Tel Aviv Ltd.Google Scholar
  83. 83.
    Peled, E., Blum, A., Aharon, A., Travitsky, N., Konra, Y., Saadi, K., Zel, V., Goor, M., Alon, M., and Gorenshtein, R., Catalyst composition, useful in e.g. membrane electrode assembly and fuel cells, comprises precious metal, where the catalyst composition is capable of catalyzing a charging reaction and a discharging reaction in a regenerative fuel cell, Univ. Ramot at Tel Aviv Ltd.Google Scholar
  84. 84.
    Braff, W.A. and Buie, C.R., Hydrogen bromine laminar flow electrochemical cell for high power and efficiency energy storage applications, in Battery/Energy Technology, Dudney, N.J., C.Y.M., 2011, vol. 33, pp. 179–190.Google Scholar
  85. 85.
    Baldwin, R.S., Electrochemical Performance and Transport Properties of a Nafion Membrane in Ahydrogen-Bromine Cell Environment, NASA Lewies Research Center., 1987.Google Scholar
  86. 86.
    Kreutzer, H.M., Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage, University of Kansas, 2012.Google Scholar
  87. 87.
    Weber, A. and Darling, R.M., Understanding porous water-transport plates in polymer-electrolyte fuel cells, J. Power Sources, 2007, vol. 168, pp. 191–199.CrossRefGoogle Scholar
  88. 88.
    Jinnouchi, R., Yamada, H., and Morimoto, Yu., Measurement of electro-osmotic drag coefficient of Nafion using a concentration cell, in 14th International Conference on the Properties of Water and Steam in Kyoto, pp. 403–406.Google Scholar
  89. 89.
    Yeo, R.S. and McBreen, J., Transport properties of Nafion membranes in electrochemically regenerative hydrogen-halogen cells, J. Electrochem. Soc., 1979, vol. 126, pp. 1682–1687.CrossRefGoogle Scholar
  90. 90.
    Yeo, R.S., Applications of perfluorosulfonated-polymer membranes in fuel-cells, electrolyzers, and load leveling devices, ACS Symp. Ser., 1982, vol. 180, pp. 453–473.CrossRefGoogle Scholar
  91. 91.
    Yeo, R.S., McBreen, J., Kissel, G., Kulesa, F., and Srinivasan, S., Perfluorosulfonic acid (Nafion) membrane as a separator for an advanced alkaline water electrolyzer, J. Appl. Electrochem., 1980, vol. 10, pp. 741–747.CrossRefGoogle Scholar
  92. 92.
    Yeo, R.S., Orehotsky, J., Visscher, W., and Srinivasan, S., Ruthenium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes, J. Electrochem. Soc., 1981, vol. 128, pp. 1900–1904.CrossRefGoogle Scholar
  93. 93.
    Yeo, R.S., Zeldin, A.N., and Kukacka, L.E., Corrosion of polymer-concrete composites in hydrochloric-acid at elevated-temperature, J. Appl. Pol. Sci., 1981, vol. 26, pp. 1159–1165.CrossRefGoogle Scholar
  94. 94.
    Balko, E.N., McElroy, J.F., and Laconti, A.B., Halogen acid electrolysis in solid polymer electrolyte cells, Int. J. Hydrogen Energy, 1981, vol. 6, pp. 577–587.CrossRefGoogle Scholar
  95. 95.
    Molter, T.M., US Patent 4818637, 1989.Google Scholar
  96. 96.
    Carlin, W.W., US Patent 4323435, 1982.Google Scholar
  97. 97.
    Du Bois, D.W. and Darlington W.B., US Patent 4342629, 1982.Google Scholar
  98. 98.
    Hoekje, H.H., US Patent 4339314, 1982.Google Scholar
  99. 99.
    Darlington, W.B., Du Bois, D.W., US Patent 4315805, 1982.Google Scholar
  100. 100.
    Darlington, W.B. and Du Bois, D.W., US Patent 4364815, 1982.Google Scholar
  101. 101.
    Welch, C.N., US Patent 4312738, 1982.Google Scholar
  102. 102.
    Graybill, W.B. and Korach, M., US Patent 4379209, 1983.Google Scholar
  103. 103.
    Foller, P.C., Roberts, D.G., and Tang, R.H., US Patent 5882501, 1999.Google Scholar
  104. 104.
    Foller, P.C., Roberts, D.G., and Tang, R.H., US Patent 5904829, 1999.Google Scholar
  105. 105.
    Foller, P.C., Roberts, D.G., and Tang, R.H., US Patent 5906722, 1999.Google Scholar
  106. 106.
    Foller, P.C., Roberts, D.G., Tang, R.H., and Franks, J.R., US Patent 5900133, 1999.Google Scholar
  107. 107.
    Yeo, R.S., J.M., Tseung, A.C.C, Srinivasan, S., and McElroy, J., An electrochemically regenerative hydrogen-chlorine energy storage system: electrode kinetics and cell performance, J. Appl. Electrochem., 1980, vol. 10, pp. 393–404.CrossRefGoogle Scholar
  108. 108.
    Hsueh, K.L., Chin, D.T., McBreen, J., and Srinivasan, S., Optimization of an electrochemical hydrogen-chlorine energy-storage system, J. Appl. Electrochem., 1981, vol. 11, pp. 503–515.CrossRefGoogle Scholar
  109. 109.
    Center, N.G.R. and Giner, I., NASA SBIR Phase II: Novel Electrodes for Hydrogen/Bromine Battery, 1984, vol. 2012.Google Scholar
  110. 110.
    Wilkins, L., US Patent 6368474B1, 2002.Google Scholar
  111. 111.
    Molter, T.M., SBIR Phase I: Development of Hydrogen/Halogen Fuel Cell Technology for Renewables Based Energy Storage, NSF: 114 Harvest Lane Glastonbury, CT 06033, 2008.Google Scholar
  112. 112.
    Kansas, T.N.U.o., Arlington, W.-J. L. U. o. T. a., Eric McFarland and Horia Metiu (University of California, S. B., University)., P. P. V., Regenerative Hydrogen-Bromine Fuel Cell System for Energy Storage, NSF ENG/EFRI 2010.Google Scholar
  113. 113.
    Nguyen, T.V., 2012.Google Scholar
  114. 114.
    Srinivasan, V., 2012.Google Scholar
  115. 115.
    Xing, B.O.S., J. New Mat. Electrochem. Systems, 1999, vol. 2, p. 95.Google Scholar
  116. 116.
    Haile, S., From laboratory breakthrough to technological realization: the development path for solid acid fuel cells, Interface, 2009, no. Fall, pp. 53–59.Google Scholar
  117. 117.
    Yoshihiro Yamazaki, R.H.-S. and Sossina M., Haile, High total proton conductivity in large-grained yttrium-doped barium zirconate, Chem. Mater., 2009, vol. 21, pp. 2755–2762.CrossRefGoogle Scholar
  118. 118.
    Colombine, P., Proton-Conducting materials, Cambridge Univ. Press, 1992CrossRefGoogle Scholar
  119. 119.
    Murakami, T., Nishikiori, T., Nohira, T., and Ito, Y., Electrolytic ammonia synthesis from hydrogen chloride and nitrogen gases with simultaneous recovery of chlorine under atmospheric pressure, Electrochem. Solid State Lett., 2005, vol. 8, pp. D19–D21.CrossRefGoogle Scholar
  120. 120.
    Jacobson, C.P., Visco, S.J., DeJonghe, L.C., and Stefan, C.I., US Patent 7090752 B2, 2006.Google Scholar
  121. 121.
    Jacobson, C.P., Visco, S.J., DeJonghe, L.C., and Stefan, C.I., US Patent 7468120 B2, 2008.Google Scholar
  122. 122.
    Groult, H., Electrochemistry of fluorine production, J. Fluorine Chem., 2003, vol. 119, pp. 173–189.CrossRefGoogle Scholar
  123. 123.
    Yang, Z., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J., Electrochemical energy storage fro green grid, Chem. Rev., 2012.Google Scholar
  124. 124.
    Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., and Saleem, M., Progress in flow battery research and development, J. Electrochem. Soc., 2011, vol. 158, pp. R55–R79.CrossRefGoogle Scholar
  125. 125.
    Skyllas-Kazacos, M., Kazacos, G., Poon, G., and Verseema, H., Recent advances with UNSW vanadium-based redox flow batteries, Int. J. Energy Res., 2010, vol. 34, pp. 182–189.CrossRefGoogle Scholar
  126. 126.
    Carter, W.A., Chiang, Y.M., Duduta, M., and Limthogkul, P., US Patent US2011/0189520A1, 2011.Google Scholar
  127. 127.
    Meyerrand, R.G., US Patent 4263110, 1979.Google Scholar
  128. 128.
    Grantham, D.H., US Patent 4236984, 1980.Google Scholar
  129. 129.
    Grantham, D.H., US Patent 4203814, 1980.Google Scholar
  130. 130.
    Meyerand, R.G., US Patent 4263110, 1981.Google Scholar
  131. 131.
    Waycuilis, J.J., Moore, P.K., and Lisewky, G.A., US Patent 8282810, 2011.Google Scholar
  132. 132.
    Bossel, U., Does a hydrogen economy make sense?, Proc. IEEE, 2006, vol. 94, no. 10, pp. 1826–1837.CrossRefGoogle Scholar
  133. 133.
    Russell Hensley, J.N. and Rogers, M., Battery Technology Charges Ahead., 2012.Google Scholar
  134. 134.
    Besenhard, J. O. and Fritz J.O., Cathodic reduction of graphite in organic solutions of alkali and NR 4+ salts, J. Electroanal. Chem., 1974, vol. 53, p. 329.CrossRefGoogle Scholar
  135. 135.
    Gallone, P.G.M., Electrochem. Technol., 1965, vol. 3, p. 321.Google Scholar
  136. 136.
    Berndt, K., Dolle, V., and Kreuzberger, G., Chem. Technol., 1969, p. 607.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Ftorion, Inc.BostonUSA

Personalised recommendations