Advertisement

Russian Journal of Electrochemistry

, Volume 49, Issue 4, pp 354–358 | Cite as

Nanosized Fe3O4-modified activated carbon for supercapacitor electrodes

  • Ping He
  • Ke Yang
  • Wei Wang
  • Faqin Dong
  • Licheng Du
  • Hongtao Liu
Article

Abstract

Nanosized Fe3O4-modified activated carbon composites for supercapacitor electrodes have been investigated. Structural and morphological characterizations of activated materials are carried out using X-ray diffraction and scanning electron microscopy, respectively. The electrochemical performances of the composite electrodes are evaluated by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The experimental results show that the specific capacitances of the 10 wt % Fe3O4-modified activated carbon composite electrode (154.3 F g−1) is highly improved compared with that of Fe3O4 (78.5 F g−1) and AC (79.2 F g−1) at the current density of 5 mA cm−2, respectively. The charge/discharge tests show that it could retain 79.6% of its initial capacitance over 1000 cycles, suggesting its potential application for the fabrication of high-quality supercapacitors.

Keywords

supercapacitor activated carbon Fe3O4 nanoparticle cyclic voltammetry chronopotentiometry, electrochemical impedance spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewandowski, A. and Galinski, M., J. Power Sources, 2007, vol. 173, p. 822.CrossRefGoogle Scholar
  2. 2.
    Inagaki, M., Konnoa, H., and Tanaike, O., J. Power Sources, 2010, vol. 195, p. 7880.CrossRefGoogle Scholar
  3. 3.
    Wang, Q., Wen, Z.H., and Li, J.H., J. Nanosci. Nanotech., 2007, vol. 7, p. 3328.CrossRefGoogle Scholar
  4. 4.
    Rajeswari, J., Kishore, P.S., and Viswanathan, B., and Varadarajan, T.K., Electrochem. Commun., 2009, vol. 11, p. 572.CrossRefGoogle Scholar
  5. 5.
    Han, Y.Q. and Lu, Y., Carbon, 2007, vol. 45, p. 2394.CrossRefGoogle Scholar
  6. 6.
    Zheng, J.P. and Jow, R.J., J. Electrochem. Soc., 1995, vol. 142 p. L6.Google Scholar
  7. 7.
    Wang, D.C., Ni, W.B., Pang, H., Lu, Q.Y., Huang, Z.J., and Zhao, J.W., Electrochim. Acta, 2010, vol. 55, p. 6830.CrossRefGoogle Scholar
  8. 8.
    Xu, J., Gao, L., Cao, J.Y., Wang, W.C., and Chen, Z.D., Electrochim. Acta, 2010, vol. 56, p. 732.CrossRefGoogle Scholar
  9. 9.
    Jayalakshmi, M., Rao, M.M., Venugopal, N., and Kimb, K.B., J. Power Sources, 2007, vol. 166, p. 578.CrossRefGoogle Scholar
  10. 10.
    Rodella, C.B. and Mastelaro, V.R., J. Phys. Chem. Solids, 2003, vol. 64, p. 833.CrossRefGoogle Scholar
  11. 11.
    Chen, Y.T., He, P., Liang, Y., Yi, X.F., Sun, J.T., and Jiang, Q.Y., ECS Transactions, 2010, vol. 28, p. 107.CrossRefGoogle Scholar
  12. 12.
    Wu, N.L., Wang, S.Y., Han, C.Y., Wu, D.S., and Shiue, L.R., J. Power Sources, 2003, vol. 113, p. 173.CrossRefGoogle Scholar
  13. 13.
    Yoon, S.H., Oh, S.M., and Lee, C.W., and Ryu, J.H., Electroanal. Chem., 2011, vol. 650, p. 187.CrossRefGoogle Scholar
  14. 14.
    Gao, P.C., Lu, A.H., and Li, W.C., J. Power Sources, 2011, vol. 196, p. 4095.CrossRefGoogle Scholar
  15. 15.
    Raymundo-Piñero, E., Kierzek, K., Machnikowski, J., and Béguin, F., Carbon, 2006, vol. 44, p. 2498.CrossRefGoogle Scholar
  16. 16.
    Bleda-Martínez, M.J., Maciá-Agulló, J.A., Lozano-Castelló, D., Morallón, E., Cazorla-Amorós, D., and Linares-Solano, A., Carbon, 2005, vol. 43, p. 2677.CrossRefGoogle Scholar
  17. 17.
    Lee, Y.H., Oh, J.G., Oh, H.S., and Kim, H., Electrochem. Commun., 2008, vol. 10, p. 1035.CrossRefGoogle Scholar
  18. 18.
    Brousse, T., Taberna, P.L., Crosnier, O., and Guillemet, R.D., J. Power Sources, 2007, vol. 173, p. 633.CrossRefGoogle Scholar
  19. 19.
    Chen, J., Huang, K.L., and Liu, S.Q., Electrochim. Acta, 2009, vol. 55, p. 1.CrossRefGoogle Scholar
  20. 20.
    Peng, D.F., Beysen, S., Li, Q., Jian, J.K., and Sun., Y.F., J. Jiwuer, Particuology, 2009, vol. 7, p. 35.CrossRefGoogle Scholar
  21. 21.
    Lee, J.B. and Goodenough, J.B., J. Solid State Chem., 1999, vol. 144, p. 220.CrossRefGoogle Scholar
  22. 22.
    Patake, V.D., Lokhande, C.D., and Joo, O.S., Appl. Surf. Sci., 2009, vol. 255, p. 4192.CrossRefGoogle Scholar
  23. 23.
    Li, F.H., Chi, W.D., Shen, Z.M., Wu, Y.X., Liu, Y.E., and Liu, H., Fuel, Process. Technol., 2010, vol. 91, p. 17.CrossRefGoogle Scholar
  24. 24.
    Li, J., Wang, X.Y., Huang, Q.H., Gamboa, S., and Sebastian, P.J., J. Power Sources, 2006, vol. 158, p. 784.CrossRefGoogle Scholar
  25. 25.
    Xiong, W., Liu, M.X., Gan, L.H., Lv, Y.K., Li, Y., Yang, L., Xu, Z.J., Hao, Z.X., Liu, H.L., and Chen, L.W., J. Power Sources, 2011, vol. 196, p. 10461.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Ping He
    • 1
  • Ke Yang
    • 1
  • Wei Wang
    • 1
  • Faqin Dong
    • 1
  • Licheng Du
    • 1
  • Hongtao Liu
    • 2
  1. 1.Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangSichuan, P. R. China
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan, P. R. China

Personalised recommendations