Advertisement

Russian Journal of Electrochemistry

, Volume 49, Issue 4, pp 313–323 | Cite as

Estimation of MEA parameters and prediction of PEM fuel cells electrical performances using numerical modelling

  • A. J. -J. Kadjo
  • S. Martemianov
  • J. -P. Chabriat
Article
  • 156 Downloads

Abstract

In this paper, a coupled model of transfer phenomena within Proton Exchange Membrane Fuel Cell (PEMFC) developed from Stefan-Maxwell (in the diffusion and active layers), Butler-Volmer (in the active layer), and water mass transport (in the electrolyte membrane) equations is presented. This modeling allows interpreting experimental results, prediction of PEMFC electrical performances and guiding perspective investigations on optimization of PEMFC. The model helps the research of dominating sensitivity parameters, as well as the estimation of some badly known MEA (Membrane Electrode Assembly) parameters using fuel cell tests.

Keywords

fuel cell proton exchange membrane (PEM) electrical performance fuel cell tests modeling MEA parameters estimation 

Nomenclature

Dij

binary diffusion coefficient of species i to j (m2 s−1)

Dijeff

effective diffusion coefficient of species i to j (m2 s−1)

Dm

effective diffusion coefficient of water in the membrane (m2 s−1)

EW

equivalent weight (kg mol−1)

ΔG0*

activation energy (J mol−1)

E0

standard potential (V)

Ecell

cell potential (V)

L

thickness (m)

F

Faraday’s constant (96485 C mol−1)

Ji

density of molar flux (mol m−2 s−1)

Mi

molar weight (kg mol−1)

n

number of electrons being transferred for one act of the overall reaction

yi

molar rate of the gas species i

R

universal gas constant (8.314 J mol−1 K−1)

T

cell temperature (K)

i0

exchange current density (A m−2)

i

current density (A m−2)

P

pressure (Pa)

Psat

saturated vapor pressure (Pa)

ρdry

dry Nafion® density (kg m−3)

fv

roughness factor

Greek Letters

ɛ

porosity

τ

tortuosity

α

transfer coefficient

κ

protonic conductivity (S m−1)

λ

water content in the membrane (−)

η

over potential (V)

Subscripts

a

anode

c

cathode

m

membrane

hum

humidification

cell

cell

eff

effective

DL

diffusion layer

CL

anodic active layer

ref

reference

H2

hydrogen

H2O

water

O2

oxygen

N2

nitrogen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berg, P., Promislow, K., Pierre, J.St. and Stumper, J., J. Electrochem. Soc., 2004, vol. 37, p. 341.CrossRefGoogle Scholar
  2. 2.
    Bemardi, D.M. and Verbrugge, M.W., AIChE J., 1991, vol. 37, p. 1151.CrossRefGoogle Scholar
  3. 3.
    Fuller, T. and Newman, J., J. Electrochem. Soc., 1993, vol. 140, p. 1218.CrossRefGoogle Scholar
  4. 4.
    Nguyen, T.V. and White, R.E., J. Electrochem. Soc., 1993, vol. 140, p. 2178.CrossRefGoogle Scholar
  5. 5.
    Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., J. Electrochem. Soc., 1991, vol. 138, p. 2334.CrossRefGoogle Scholar
  6. 6.
    Beming, T., Lu, D.M., and Djilali, N., J. Power Sources, 2002, vol. 106, p. 284.CrossRefGoogle Scholar
  7. 7.
    Yi, J.S. and Nguyen, T.V., J. Electrochem. Soc., 1999, vol. 146, p. 38.CrossRefGoogle Scholar
  8. 8.
    Um, S., Wang, C.-Y., and Chen. K.S., J. Electrochem. Soc., 2000, vol. 147, p. 4485.CrossRefGoogle Scholar
  9. 9.
    Sivertsen, B.R. and Djilali, N., J. Power Sources, 2005, vol. 141, pp. 65–78.CrossRefGoogle Scholar
  10. 10.
    Thampan, T., Malhotra, S., Tang, H, and Datta, R., J. Electrochem. Soc., 2000, vol. 147, pp. 3242–3250.CrossRefGoogle Scholar
  11. 11.
    Suares, G.E. and Hoo, K.A., Chem. Eng. Sci., 2000, vol. 55, p. 2237.CrossRefGoogle Scholar
  12. 12.
    Guo, Q., Sethuraman, V.A., and White, R.A., J. Electrochem. Soc., 2004, vol. 151, p. 983.CrossRefGoogle Scholar
  13. 13.
    Bemadi, S.M. and Verbrugge. M.W., Journal of the Electrochemical Society, 1992, vol. 139, p. 2477.CrossRefGoogle Scholar
  14. 14.
    Okada, T., Journal of the Electrochemical Society, 1993, vol. 140, p. 2178.CrossRefGoogle Scholar
  15. 15.
    Okada, T., Xie, G., and Y. Tanabe, J. Electroanal. Chem., 1996, vol. 413, p. 49.CrossRefGoogle Scholar
  16. 16.
    Costamagna, P., Chemical Engineering Science, 2001, vol. 56, p. 323.CrossRefGoogle Scholar
  17. 17.
    Gurau, V., Liu, H., and Kakac, S., AIChE J., 1998, vol. 44, p. 2410.CrossRefGoogle Scholar
  18. 18.
    Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport of Phenomena, 2nd ed., New York: John Wiley & Sons, 2002.Google Scholar
  19. 19.
    Hinatsu, J.T., Mizuhata, M., and Takenaka. H., J. Electrochem. Soc., 1994, vol. 141, p. 1493.CrossRefGoogle Scholar
  20. 20.
    Neubrand, W., Thesis, Modelbilung und Simulation von Elektromem branverfahren, Logos, 1999.Google Scholar
  21. 21.
    Hamann, C.H., Hamnett, A., and Vielstich, W., Electrochemistry, Wiley-VCH, 1998.Google Scholar
  22. 22.
    Liu, Z., Wainright, J.S., Litt M.H., and Savinell, R.F., Electrochimica Acta, 2006, vol. 51, p. 3914.CrossRefGoogle Scholar
  23. 23.
    Gasteiger, H.A., Gu, W., Makharia, R., and Matthias, M.F., Electrochemical Society Meeting, Orlando, FL, 2003.Google Scholar
  24. 24.
    Amphlett, J.C., Baumert, R.M., Mann, R.F., Peppley, B.A., Roberge, P.R., and Rodrigues, A., J. Power Sources, 1994, vol. 49, p. 349.CrossRefGoogle Scholar
  25. 25.
    Parthasarathy, A., Srinivasan, S., Appleby, A.J., and Martin, C.R., Journal of the Electrochemical Society, 1992, vol. 139, p. 2530.CrossRefGoogle Scholar
  26. 26.
    Diard, J.P., Le Gorrec, B., and Montella, C., Cinétique électrochimique, Hermann, Paris, 1996.Google Scholar
  27. 27.
    Chan, S.H. and Tun, W.A., Chem. Eng. Technol., 2001, vol. 24, p. 51.CrossRefGoogle Scholar
  28. 28.
    Yin, K.M., Journal of the Electrochemical Society, 2005, vol. 152, p. A586.Google Scholar
  29. 29.
    Wöhr, M., Bolwin, K., Schnumberger, W., Fischer, M., Neubrand, W., and Eigenberger, G., Int. J. Hydrogen Energy, 1998, vol. 23, p. 213.CrossRefGoogle Scholar
  30. 30.
    Bevers, D., Wohr, M., Yasuda, K., and K. Oguro., J. Appl. Electrochem., 1997, vol. 27, p. 1254.CrossRefGoogle Scholar
  31. 31.
    Ju, H., Meng, H., and Wang, C.Y., Int. J. Heat Mass Transfer, 2005, vol. 48, p. 1303.CrossRefGoogle Scholar
  32. 32.
    Corrêa, J.M., Farret, F.A., Popov, V.A., and Simoes, M.G., IEEE Trans. Energy Conversion, 2005, vol. 20, p. 211.CrossRefGoogle Scholar
  33. 33.
    Kadjo, A.J.-J., Brault, P., Caillard, A., Coutanceau, C., Gamier, J.-P., and Martemianov, S., J. Power Sources, 2007, vol. 172, p. 613.CrossRefGoogle Scholar
  34. 34.
    Kadjo, A.J-J., Gamier, J.-P., Maye, J.-P., Relot, F., and Martemianov, S., Russian J. Electrochem., 2006, vol. 42, p. 525.CrossRefGoogle Scholar
  35. 35.
    Yao, K.Z., Karan, K., Auley, K.B., Oosthuizen, P., Peppley, B., and Xie, T., Fuel Cells, 2004, vol. 4, p. 3.CrossRefGoogle Scholar
  36. 36.
    Vielstich, W., Lamm, A., and Gasteiger, H.A., Hand-book of Fuel Cells: Fundamentals, technology, and Applications Wiley, England: Chichester, 2003.Google Scholar
  37. 37.
    Wang, L., Husar, A., Zhou, T., and Liu, H., International J. Hydrogen Energy, 2003, vol. 28, p. 1263.CrossRefGoogle Scholar
  38. 38.
    Siegel, N.P., Ellis, M.W., Nelson, D.J., and Von Spakovsky, M.R., J. Power Sources, 2003, vol. 128, p. 173.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. J. -J. Kadjo
    • 1
  • S. Martemianov
    • 2
  • J. -P. Chabriat
    • 1
  1. 1.Laboratory of Energy, Electronics and Process (LE2P), EA 4079University of The Reunion IslandSaint Denis, Reunion IslandFrance
  2. 2.Pprimme Institute, UPR of CNRS 3346; CNRSUniversity of Poitiers, ENSMA; Fluid Branch; ENSIP — Bâtiment MécaniquePoitiers CedexFrance

Personalised recommendations