Russian Journal of Electrochemistry

, Volume 48, Issue 7, pp 727–737 | Cite as

Electrochemical behaviour of oxygen reduction on polymer carbon electrodes in alkaline media

Special Issue of Journal Devoted to the Problems of Mass Transfer in the Electrochemical Systems


The preparation of polymer carbon electrocatalysts by the controlled pyrolysis of polyfurfuryl alcohol polymer is described. The potentiostatic method was used to study the electrochemical behaviour of the oxygen reduction reaction on the prepared catalyst electrodes in potassium hydroxide electrolyte. A pure polymer carbon electrode and a cobalt chloride doped polymer carbon electrode were shown to be active in oxygen reduction, but the electrode containing cobalt chloride seemed the most active. The main reaction product at the pure polymer electrode is hydrogen peroxide, involving two electrons, whereas at a poly(CoCl2) electrode the reduction process reaches partly its ultimate state, and involves at most three electrons.


polymer carbon electrodes transition metal salts oxygen electroreduction alkaline media potentiostatic testing reduction mechanisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paucirova, M., Drazic, S.M., and Damjanovic, A., Electrochim. Acta, 1973, vol. 18, p. 945.CrossRefGoogle Scholar
  2. 2.
    Brito, P.S.D. and Sequeira, C.A.C., J. Power Sources, 1994, vol. 52, p. 1.CrossRefGoogle Scholar
  3. 3.
    Liu, L., Lee, J.-W., and Popov, B.N., J. Power Sources, 2006, vol. 162, p. 1099.CrossRefGoogle Scholar
  4. 4.
    Brussel, M.V., Kokkinidis, G., Hubin, A., and Buess-Herman, C., Electrochim. Acta, 2003, vol. 48, p. 3909.CrossRefGoogle Scholar
  5. 5.
    Tripković, V., Skúlason, E., Siahrostami, S., Nørskov, J.K., and Rossmeisl, J., Electrochim. Acta, 2010, vol. 55, p. 7975.Google Scholar
  6. 6.
    Walch, S., Dhande, A., Aryanpour, M., and Pitsch, M., J. Phys. Chem., 2008, vol. 112, p. 8464.CrossRefGoogle Scholar
  7. 7.
    Jacob, T., Fuel Cells, 2006, vol. 6, p. 159.CrossRefGoogle Scholar
  8. 8.
    Yeager, E.B., J. Mol. Catal., 1986, vol. 38, p. 5.CrossRefGoogle Scholar
  9. 9.
    Marković, N.M., Adžić, R.R., Cahan, B.D., and Yeager, E.B., J. Electroanal. Chem., 1994, vol. 377, p. 249.CrossRefGoogle Scholar
  10. 10.
    Qu, D., Carbon, 2007, vol. 45, p. 1296.CrossRefGoogle Scholar
  11. 11.
    Nagaoka, T. and Sakai, T., Anal. Chem., 1986, vol. 58, p. 1953.CrossRefGoogle Scholar
  12. 12.
    Appel, M. and Appleby, A.J., Electrochim. Acta, 1978, vol. 23, p. 1243.CrossRefGoogle Scholar
  13. 13.
    Iliev, I., Mrha, J., Kaisheva, A., and Gamburzeg, S., J. Power Sources, 1978, vol. 3, p. 245.CrossRefGoogle Scholar
  14. 14.
    Kruusenberg, I., Leis, J., Arulepp, M., and Tammeveski, K., J. Sol. St. Electrochem., 2010, vol. 14, p. 1269.CrossRefGoogle Scholar
  15. 15.
    Elbaz, L., Korin, E., Soifer, L., and Bettelheim, A., J. Electroanal. Chem., 2008, vol. 621, p. 91.CrossRefGoogle Scholar
  16. 16.
    Manisankar, P. and Gomathi, A., J. Power Sources, 2005, vol. 150, p. 240.CrossRefGoogle Scholar
  17. 17.
    Manisankar, P. and Gomathi, A., J. Mol. Catal A: Chemical, 2005, vol. 232, p. 45.CrossRefGoogle Scholar
  18. 18.
    Vaik, K., Sarapun, A., Tammeveski, K., Mirkhalaf, F., and Sahiffrin, D.J., J. Electroanal. Chem., 2004, vol. 564, p. 159.CrossRefGoogle Scholar
  19. 19.
    Jasinski, R., J. Electrochem. Soc., 1965, vol. 112, p. 526.CrossRefGoogle Scholar
  20. 20.
    Bagotsky, V.S., Tarasevich, M.R., Radynshkina, K.A., Levina, O.A., and Andrusyova, S.I., J. Power Sources, 1977, vol. 2, p. 233.CrossRefGoogle Scholar
  21. 21.
    Deng, C.Z. and Dignam, M.J., J. Electrochem. Soc., 1998, vol. 145, p. 3513.CrossRefGoogle Scholar
  22. 22.
    van der Putten, A., Elzing, A., Visscher, W., and Barendrecht, E., J. Electroanal. Chem., 1986, vol. 205, p. 233.CrossRefGoogle Scholar
  23. 23.
    Zhao, Q.-L., Zhang, Z.-L., Bao, L., and Pang, D.-W., Electrochem. Comm., 2008, vol. 10, p. 181.CrossRefGoogle Scholar
  24. 24.
    Harris, P.J.F., Phil. Magazine, 2004, vol. 84, p. 3159.CrossRefGoogle Scholar
  25. 25.
    Shi, K. and Shiu, K.-K., Anal. Chem., 2002, vol. 74, p. 879.CrossRefGoogle Scholar
  26. 26.
    Downard, A.J. and Prince, M.J., Langmuir, 2001, vol. 17, p. 5581.CrossRefGoogle Scholar
  27. 27.
    Mikhaylova, A.A., Khazova, O.A., and Bagotzky, V.S., J. Electroanal. Chem., 2000, vol. 480, p. 225.CrossRefGoogle Scholar
  28. 28.
    Field, J.S. and Swain, M.V., Carbon, 1996, vol. 34, p. 1357.CrossRefGoogle Scholar
  29. 29.
    Kneten, K.R. and McCreery, R.L., Anal. Chem., 1992, vol. 64, p. 2518.CrossRefGoogle Scholar
  30. 30.
    Fabre, B., Hao, E., Lejeune, Z.M., Amuhaya, E.K., Barriére, F., Garno, J.C., and Vicente, M.G.H., ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 691.CrossRefGoogle Scholar
  31. 31.
    Shaidarova, L.G., Gedmina, A.V., and Budnikov, G.K., J. Anal. Chem., 2003, vol. 58, p. 171.CrossRefGoogle Scholar
  32. 32.
    Yamamoto, K. and Taneichi, D., J. Inorg. Organomet. Polym., 1999, vol. 9, p. 231.CrossRefGoogle Scholar
  33. 33.
    Hakoda, T., Yamamoto, S., Kawaguchi, K., Yamaki, T., Kobayashi, T., and Yoshikawa, M., Appl. Surf. Sci., 2010, vol. 257, p. 1556.CrossRefGoogle Scholar
  34. 34.
    Zeng, Z.Y., Gupta, S.L., Huang, H., and Yeager, E.B., J. Appl. Electrochem., 1991, vol. 21, p. 973.CrossRefGoogle Scholar
  35. 35.
    Scherson, D.A., Gupta, S.L., Fierro, C., Yeager, E.B., Kordesch, M.E., Eldridge, J., Hoffman, R.W., and Blue, J., Electrochim. Acta, 1983, vol. 28, p. 1205.CrossRefGoogle Scholar
  36. 36.
    Zagal, J., Sen, R.K., and Yeager, E.B., J. Electroanal. Chem. Interfacial Electrochem., 1977, vol. 83, p. 207.CrossRefGoogle Scholar
  37. 37.
    Olson, T.S., Pylypenko, S., Atanassov, P., Asazawa, K., Yamada, K., and Tanaka, H., J. Phys. Chem. C, 2010, vol. 114, p. 5049.CrossRefGoogle Scholar
  38. 38.
    Gouérec, P., Biloul, A., Contamin, O., Scarbeck, G., Savy, M., Riga, J., Weng, L.T., and Bertrand, P., J. Electroanal. Chem., 1997, vol. 422, p. 61.CrossRefGoogle Scholar
  39. 39.
    Easton, E.B., Yang, R., Bonakdarpour, A., and Dahn, J.R., Electrochem. Solid-State Lett., 2007, vol. 10, p. B6.CrossRefGoogle Scholar
  40. 40.
    Yang, R., Bonakdarpour, A., Bradley Easton, E., Stoffyn-Egli, P., and Dahn, J.R., J. Electrochem. Soc., 2007, vol. 154, p. A275.CrossRefGoogle Scholar
  41. 41.
    Yang, R., Stevens, K., and Dahn, J.R., J. Electrochem. Soc., 2008, vol. 155, p. B79.CrossRefGoogle Scholar
  42. 42.
    Biloul, A., Gouérec, P., Savy, M., Scarbeck, G., Besse, S., and Riga, J., J. Appl. Electrochem., 1996, vol. 26, p. 1139.CrossRefGoogle Scholar
  43. 43.
    Gouérec, P., Savy, M., and Riga, J., Electrochim. Acta, 1998, vol. 43, p. 743.CrossRefGoogle Scholar
  44. 44.
    Deng, C.Z. and Dignam, M.J., J. Electrochem. Soc., 1998, vol. 145, p. 3513.CrossRefGoogle Scholar
  45. 45.
    Taylor, R.J. and Humffray, A.A., J. Electroanal. Chem., 1975, vol. 64, p. 63.CrossRefGoogle Scholar
  46. 46.
    Bockris, J.O’M., J. Chem. Phys., 1956, vol. 24, p. 817.CrossRefGoogle Scholar
  47. 47.
    Gnanumuthu, D.S. and Petrocelli, J.V., J. Electrochem. Soc., 1967, vol. 114, p. 1036.CrossRefGoogle Scholar
  48. 48.
    Mouahid, O.E., Coutanceau, C., Belgsir, E.M., Crouigneau, P., Léger, J.M., and Lamy, C., J. Electroanal. Chem., 1997, vol. 426, p. 117.CrossRefGoogle Scholar
  49. 49.
    Davis, R.E., Horvath, G.L., and Tobias, C.W., Electrochim. Acta, 1967, vol. 12, p. 287.CrossRefGoogle Scholar
  50. 50.
    Vetter, K.J., Electrochemical Kinetics, New York: Academic Press, 1967.Google Scholar
  51. 51.
    Gileadi, E., Physical Electrochemistry, Weinheim: Wiley-VCH, 2011.Google Scholar
  52. 52.
    Taylor, R.J. and Humffray, A.A., J. Electroanal. Chem., 1975, vol. 64, p. 85.CrossRefGoogle Scholar
  53. 53.
    Yeager, E., Krause, P., and Rao, K.V., Electrochim. Acta, 1964, vol. 9, p. 1057.CrossRefGoogle Scholar
  54. 54.
    Berl, W.G., Trans. Electrochem. Soc., 1943, vol. 83, p. 253.CrossRefGoogle Scholar
  55. 55.
    Latimer, W.M., The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, New York: Prentice-Hall, 1952, 2nd ed.Google Scholar
  56. 56.
    Davies, M.O., Clark, M., Yeager, E., and Hovorka, F., J. Electrochem. Soc., 1959, vol. 106, p. 56.CrossRefGoogle Scholar
  57. 57.
    Bockris, J.O’M. and Reddy, A.K.N., Modern Electrochemistry, 1 and 2 vols., New York: Plenum Press, 1998.Google Scholar
  58. 58.
    Appleby, A.J. and Marie, J., Electrochim. Acta, 1979, vol. 24, p. 195.CrossRefGoogle Scholar
  59. 59.
    Damjanovic, A., Dey, A., and Brockris, J.O’M., Electrochim. Acta, 1967, vol. 12, p. 615.CrossRefGoogle Scholar
  60. 60.
    Damjanovic, A. and Brusic, V., Electrochim. Acta, 1967, vol. 12, p. 1171.CrossRefGoogle Scholar
  61. 61.
    Damjanovic, A., Genshaw, M.A., and Bockris, J.O’M., J. Electrochem. Soc., 1967, vol. 114, p. 466.CrossRefGoogle Scholar
  62. 62.
    Hurlen, T., Sandler, Y.L., and Pantier, E.A., Electrochim. Acta, 1966, vol. 11, p. 1463.CrossRefGoogle Scholar
  63. 63.
    Hoar, T.P., Proc. 8th Meeting CITCE, Madrid, 1956, p. 469.Google Scholar
  64. 64.
    Chen, R., Li, H., Chu, D., and Wang, G., J. Phys. Chem. C, 2009, vol. 113, p. 20689.CrossRefGoogle Scholar
  65. 65.
    Roche, I., Chaînet, E., Chatenet, M., and Vondrák, J., J. Phys. Chem. C, 2007, vol. 111, p. 1434.CrossRefGoogle Scholar
  66. 66.
    Cao, Y.L., Yang, H.X., Ai, X.P., and Xiao, L.F., J. Electroanal. Chem., 2003, vol. 557, p. 127.CrossRefGoogle Scholar
  67. 67.
    Sepa, D.B., Vojnovic, M.V., Vracar, Lj.M., and Damjanovic, A., Electrochim. Acta, 1987, vol. 32, p. 129.CrossRefGoogle Scholar
  68. 68.
    Sepa, D.B., Vojnovic, M.V., and Damjanovic, A., Electrochim. Acta, 1981, vol. 26, p. 781.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringICEMS, Instituto Superior Técnico, TU LisbonLisboaPortugal

Personalised recommendations