Russian Journal of Electrochemistry

, Volume 48, Issue 6, pp 580–592 | Cite as

Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes

Special Issue of Journal Devoted to the Problems of Mass Transfer in the Electrochemical Systems

Abstract

We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary particles that are porous themselves. The predominantly bimodal distribution of pores in the electrode consists of the interparticle or macroporosity outside the particles through which the ions are transported (transport pathways), and the intraparticle or micropores inside the particles, where electrostatic double layers (EDLs) are formed. Both types of pores are filled with electrolyte (solvent plus ions). For the micropores we make use of a novel modified-Donnan (mD) approach valid for strongly overlapped double layers. The mD-model extends the standard Donnan approach in two ways: (1) by including a Stern layer in between the electrical charge and the ions in the micropores, and (2) by including a chemical attraction energy for the ions to go from the macropores into the micropores. This is the first paper where the mD-model is used to model ion transport and electrochemical reactions in a porous electrode. Furthermore we investigate the influence of the charge transfer kinetics on the chemical charge in the electrode, i.e., a contribution to the electrode charge of an origin different from that stemming from the Faradaic reaction itself, e.g. originating from carboxylic acid surface groups as found in activated carbon electrodes. We show that the chemical charge depends on the current via a shift in local pH, i.e. “current-induced charge regulation.” We present results of an example calculation where a divalent cation is reduced to a monovalent ion which electro-diffuses out of the electrode.

Keywords

porous electrode theory; Frumkin-Butler-Volmer equation electrostatic double layer theory water desalination battery modeling Nernst-Planck equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman, J. and Tobias, C.W., J. Electrochem. Soc., 1962, vol. 109, p. 1183.CrossRefGoogle Scholar
  2. 2.
    Grens, E.A. and Tobias, C.W., Ber. Bunsengesellsch. Phys. Chem., 1964, vol. 68, p. 236.Google Scholar
  3. 3.
    De Levie, R., Electrochimica Acta, 1963, vol. 8, p. 751.CrossRefGoogle Scholar
  4. 4.
    Alkire, R.C., Grens, E.A., and Tobias, C.W., J. Electrochem. Soc., 1969, vol. 116, p. 1328.CrossRefGoogle Scholar
  5. 5.
    Johnson, A.M. and Newman, J., J. Electrochem. Soc., 1971, vol. 118, p. 510.CrossRefGoogle Scholar
  6. 6.
    Alkire, R.C. and Place, B., J. Electrochem. Soc., 1971, vol. 118, p. 1687.CrossRefGoogle Scholar
  7. 7.
    Gurevich, I.G. and Bagotzky, V.S., Electrochim. Acta, 1964, vol. 9, p. 1151.CrossRefGoogle Scholar
  8. 8.
    Gurevich, I.G. and Bagotzky, V.S., Electrochim. Acta, 1967, vol. 12, p. 593.CrossRefGoogle Scholar
  9. 9.
    Newman, J. and Tiedemann, W., AIChE J., 1975, vol. 21, p. 25.CrossRefGoogle Scholar
  10. 10.
    Prentice, G., Electrochemical Engineering Principles, Prentice-Hall, 1991.Google Scholar
  11. 11.
    Presser, V., Heon, M., and Gogotsi, Y., Adv. Funct. Mat., 2011, vol. 21, p. 810.CrossRefGoogle Scholar
  12. 12.
    Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., and Baumann, Th.F., Energy & Env. Sci., 2011, vol. 4, p. 656.CrossRefGoogle Scholar
  13. 13.
    Biesheuvel, P.M., Fu, Y., and Bazant, M.Z., Phys. Rev. E, 2011, vol. 83, art.no. 061507.Google Scholar
  14. 14.
    Verbrugge, M.W. and Liu, P., J. Electrochem. Soc., 2005, vol. 152, p. D79.CrossRefGoogle Scholar
  15. 15.
    Landstorfer, M., Funken, S., and Jacob, T., PCCP, 2011, vol. 13, p. 12817.CrossRefGoogle Scholar
  16. 16.
    Bower, A.F., Guduru, P.R., and Sethuraman, V.A., J. Mech. Phys. Solids, 2011, vol. 59, p. 804.CrossRefGoogle Scholar
  17. 17.
    Franco, A.A., Schott, P., Jallut, C., and Maschke, B., Fuel Cells, 2007, vol. 2, p. 99.CrossRefGoogle Scholar
  18. 18.
    Biesheuvel, P.M., Franco, A.A., and Bazant, M.Z., J. Electrochem. Soc., 2009, vol. 156, p. B225.CrossRefGoogle Scholar
  19. 19.
    Chan, K. and Eikerling, M., J. Electrochem. Soc., 2011, vol. 158, p. B18.CrossRefGoogle Scholar
  20. 20.
    Conway, B.E., Electrochemical Supercapacitors, Kluwer, 1999.Google Scholar
  21. 21.
    Dunn, D. and Newman, J., J. Electrochem. Soc., 2000, vol. 147, p. 820.CrossRefGoogle Scholar
  22. 22.
    Volkovich, Y.M., and Serdyuk, T.M., Russ. J. Electrochem., 2002, vol. 38, p. 935.CrossRefGoogle Scholar
  23. 23.
    Eikerling, M., Kornyshev, A.A., and Lust, E., J. Electrochem. Soc., 2005, vol. 152, p. E24.CrossRefGoogle Scholar
  24. 24.
    Griffiths, S.K. and Nilson, R.H., J. Electrochem. Soc., 2010, vol. 157, p. A469.CrossRefGoogle Scholar
  25. 25.
    Robinson, D.B., Max Wu, C.-A., and Jacobs, B.W., J. Electrochem. Soc., 2010, vol. 157, p. A912.CrossRefGoogle Scholar
  26. 26.
    Feng, G., Qiao, R., Huang, J., Sumpter, B.G., and Meunier, V., ACS Nano, 2010, vol. 4, p. 2382.CrossRefGoogle Scholar
  27. 27.
    Murphy, G.W. and Caudle, D.D., Electrochimica Acta, 1967, vol. 12, p. 1655.CrossRefGoogle Scholar
  28. 28.
    Oren, Y. and Soffer, A., J. Appl Electrochem., 1983, vol. 13, p. 473.CrossRefGoogle Scholar
  29. 29.
    Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F., J. Appl. Electrochem., 1996, vol. 26, p. 1007.CrossRefGoogle Scholar
  30. 30.
    Spiegler, K.S. and El-Sayed, Y.M., Desalination, 2001, vol. 134, p. 109.CrossRefGoogle Scholar
  31. 31.
    Gabelich, C.J., Tran, T.D., and Suffet, I.H., Environm. Sci. Techn., 2002, vol. 36, p. 3010.CrossRefGoogle Scholar
  32. 32.
    Welgemoed, T.J. and Schutte, C.F., Desalination, 2006, vol. 183, p. 327.CrossRefGoogle Scholar
  33. 33.
    Biesheuvel, P.M., J. Colloid Interface Sci., 2009, vol. 332, p. 258.CrossRefGoogle Scholar
  34. 34.
    Biesheuvel, P.M., van Limpt, B., and van der Wal, A., J. Phys. Chem. C, 2009, vol. 113, p. 5636.CrossRefGoogle Scholar
  35. 35.
    Noked, M., Avraham, E., Soffer, A., and Aurbach, D., J. Phys. Chem. C, 2009, vol. 113, p. 21319.CrossRefGoogle Scholar
  36. 36.
    Bouhadana, Y., Avraham, E., Soffer, A., and Aurbach, D., AIChE J., 2010, vol. 56, p. 779.Google Scholar
  37. 37.
    Zhao, R., Biesheuvel, P.M., Miedema, H., Bruning, H., and van der Wal, A., J. Phys. Chem. Lett., 2010, vol. 1, p. 205.CrossRefGoogle Scholar
  38. 38.
    Biesheuvel, P.M. and van der Wal, A., J. Membrane Sci., 2010, vol. 346, p. 256.CrossRefGoogle Scholar
  39. 39.
    Li, H., Zou, L., Pan, L., and Sun, Z., Env. Sci. & Techn., 2010, vol. 44, p. 8692.CrossRefGoogle Scholar
  40. 40.
    Biesheuvel, P.M. and Bazant, M.Z., Phys. Rev. E, 2010, vol. 81, art.no. 031502.Google Scholar
  41. 41.
    Biesheuvel, P.M., Zhao, R., Porada, S., and van der Wal, A., J. Colloid Interface Sci., 2011, vol. 361, p. 239.CrossRefGoogle Scholar
  42. 42.
    Porada, S., Weinstein, L., Dash, R., van der Wal, A., Bryjak, M., Gogotsi, Y., and Biesheuvel, P.M., ACS Materials & Interfaces, 2012, vol. 4, p. 1194.CrossRefGoogle Scholar
  43. 43.
    Huang, Z.-H., Wang, M., Wang L., and Kang, F., Langmuir, 2012, vol. 28, p. 5079.CrossRefGoogle Scholar
  44. 44.
    Brogioli, D., Phys. Rev. Lett., 2009, vol. 103, p. 058501.CrossRefGoogle Scholar
  45. 45.
    Sales, B.B., Saakes, M., Post, J.W., Buisman, C.J.N., Biesheuvel, P.M., and Hamelers, H.V.M., Env. Sci. & Techn., 2010, vol. 44, p. 5661.CrossRefGoogle Scholar
  46. 46.
    Brogioli, D., Zhao, R., and Biesheuvel, P.M., Energy & Env. Science, 2011, vol. 4, p. 772.CrossRefGoogle Scholar
  47. 47.
    La Mantia, F., Pasta, M., Deshazer, H.D., Logan, B.E., and Cui, Y., NanoLetters, 2011, vol. 11, p. 1810.CrossRefGoogle Scholar
  48. 48.
    Boon, N. and van Roij, R., Mol. Phys., 2011, vol. 109, p. 1229.CrossRefGoogle Scholar
  49. 49.
    Biesheuvel, P.M., J. Colloid Interface Sci., 2004, vol. 275, p. 514.CrossRefGoogle Scholar
  50. 50.
    Hou, C.-H., Liang, C., Yiacoumi, S., Dai, S., and Tsouris, C., J. Colloid Interface Sci., 2006, vol. 302, p. 54.CrossRefGoogle Scholar
  51. 51.
    Huang, J., Sumpter, B.G., and Meunier, V., Chemistry, 2008, vol. 14, p. 6614.CrossRefGoogle Scholar
  52. 52.
    Birgersson, M. and Karnland, O., Geochim. Cosmochim. Acta, 2009, vol. 73, p. 1908.CrossRefGoogle Scholar
  53. 53.
    Yaniv, M. and Soffer, A., J. Electrochem. Soc., 1976, vol. 123, p. 506.CrossRefGoogle Scholar
  54. 54.
    Leroy, P., Revil, A., and Coelho, D., J. Colloid Interface Sci., 2006, vol. 296, p. 248.CrossRefGoogle Scholar
  55. 55.
    Murad, M.A. and Moyne, C., Comput. Geosci., 2008, vol. 12, p. 47.CrossRefGoogle Scholar
  56. 56.
    Chu, K.T. and Bazant, M.Z., J. Colloid Interface Sci., 2007, vol. 315, p. 319.CrossRefGoogle Scholar
  57. 57.
    Mani, A. and Bazant, M.Z., Phys Rev. E, 2011, vol. 84, p. 061504.CrossRefGoogle Scholar
  58. 58.
    Biesheuvel, P.M., J. Colloid Interface Sci., 2011, vol. 355, p. 389.CrossRefGoogle Scholar
  59. 59.
    Torquato, S., Random Heterogeneous Materials, Springer, 2002.Google Scholar
  60. 60.
    Müller, M. and Kastening, B., J. Electroanal. Chem., 1994, vol. 374, p. 149.CrossRefGoogle Scholar
  61. 61.
    Kastening, B. and Heins, M., Electrochim. Acta, 2005, vol. 50, p. 2487.CrossRefGoogle Scholar
  62. 62.
    Grahame, D.C., Chem. Rev., 1947, vol. 41, p. 441.CrossRefGoogle Scholar
  63. 63.
    Bazant, M.Z., Chu, K.T., and Bayly, B.J., SIAM J. Appl. Math., 2005, vol. 65, p. 1463.CrossRefGoogle Scholar
  64. 64.
    Frumkin, A., Z. Physik. Chem., 1933, vol. 164A, p. 121.Google Scholar
  65. 65.
    Antropov, L.I., Kinetics of Electrode Processes and Null Points of Metals, New Delhi: Council of Scientific & Industrial Research, 1960.Google Scholar
  66. 66.
    Parsons, R., Adv. Electrochem. Electrochem. Eng., 1961, vol. 1, p. 1.Google Scholar
  67. 67.
    Vetter, K.J., Electrochemical Kinetics, Academic Press, 1967.Google Scholar
  68. 68.
    Levich, V.G., Physicochemical Hydrodynamics, Prentice-Hall, 1962.Google Scholar
  69. 69.
    Itskovich, E.M., Kornyshev, A.A., and Vorotyntsev, M.A., Physica Status Solidi A, 1977, vol. 39, p. 229.CrossRefGoogle Scholar
  70. 70.
    Horvai, G., Electroanalysis, 1991, vol. 3, p. 673.CrossRefGoogle Scholar
  71. 71.
    Senda, M., Electrochimica Acta, 1995, vol. 40, p. 2993.CrossRefGoogle Scholar
  72. 72.
    Bonnefont, A., Argoul, F., and Bazant, M.Z., J. Electroanal. Chem., 2001, vol. 500, p. 52.CrossRefGoogle Scholar
  73. 73.
    Prieve, D.C., Colloids Surfaces A, 2004, vol. 250, p. 67.CrossRefGoogle Scholar
  74. 74.
    Chu, K.T., Bazant, M.Z., SIAM J. Appl Math., 2005, vol. 65, p. 1485.CrossRefGoogle Scholar
  75. 75.
    Biesheuvel, P.M., van Soestbergen, M., and Bazant, M.Z., Electrochimica Acta, 2009, vol. 54, p. 4857.CrossRefGoogle Scholar
  76. 76.
    van Soestbergen, M., Biesheuvel, P.M., and Bazant, M.Z., Phys. Rev. E, 2010, vol. 81, p. 021503.CrossRefGoogle Scholar
  77. 77.
    van Soestbergen, M., Electrochimica Acta, 2010, vol. 55, p. 1848.CrossRefGoogle Scholar
  78. 78.
    Sprague, I.B. and Dutta, P., Num. Heat Transfer, Part A, 2011, vol. 59, p. 1.CrossRefGoogle Scholar
  79. 79.
    Grahame, D.C., Annu. Rev. Phys. Chem., 1955, vol. 6, p. 337.CrossRefGoogle Scholar
  80. 80.
    Tanaka, Y., Ion Exchange Membranes, Elsevier, 2007.Google Scholar
  81. 81.
    Danielsson, C.-O., Dahlkild, A., Velin, A., and Behm, M., Electrochimica Acta, 2009, vol. 54, p. 2983.CrossRefGoogle Scholar
  82. 82.
    De Lima, S.A., Murad, M.A., Moyne, C., and Stemmelen, D., Acta Geotechn., 2008, vol. 3, p. 153.CrossRefGoogle Scholar
  83. 83.
    Sonin, A.A. and Probstein, R.F., Desalination, 1968, vol. 5, p. 293.CrossRefGoogle Scholar
  84. 84.
    Probstein, R.F., Physicochemical Hydrodynamics, Butterworths, 1989.Google Scholar
  85. 85.
    Qiao, R. and Aluru, N.R., J. Chem. Phys., 2003, vol. 118, p. 4692.CrossRefGoogle Scholar
  86. 86.
    Levi, M.D., Sigalov, S., Salitra, G., Elazari, R., and Aurbach, D., J. Phys. Chem. Lett., 2011, vol. 2, p. 120.CrossRefGoogle Scholar
  87. 87.
    Schlögl, R., Stofftransport durch Membranen, Band 9 of “Fortschritte der Physikalischen Chemie”, Darmstadt: D. Steinkopff Verlag, 1964.Google Scholar
  88. 88.
    Oren, Y. and Litan, A., J. Phys. Chem., 1974, vol. 78, p. 1805.CrossRefGoogle Scholar
  89. 89.
    Jiang, Z. and Stein, D., Langmuir, 2010, vol. 26, p. 8161.CrossRefGoogle Scholar
  90. 90.
    Jiang, Z. and Stein, D., Phys. Rev. E, 2011, vol. 83, p. 031203.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Environmental TechnologyWageningen UniversityWageningenThe Netherlands
  2. 2.WetsusCentre of excellence for sustainable water technologyLeeuwardenThe Netherlands
  3. 3.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations