Russian Journal of Electrochemistry

, Volume 48, Issue 4, pp 424–433 | Cite as

Carbon electrodes with high pseudocapacitance for supercapacitors

  • Yu. M. Vol’fkovich
  • A. A. Mikhalin
  • D. A. Bograchev
  • V. E. SosenkinEmail author


Electrochemical properties of electrodes on the basis of CH900-20 activated carbon (AC) cloth were studied in concentrated H2SO4 solutions in a wide range of potentials from −0.8 to +1 V RHE. Cyclic voltammetric curves measured in two ranges of potentials were analyzed: in the reversibility range (from 0.1 to 0.9 V) and in the deep cathodic charging range (from −0.8 to 1 V). Electric double layer (EDL) charging occurs in the reversibility range, while faradaic processes of hydrogen chemisorption and its intercalation into carbon take place in the range of negative potentials (<−0.1 V). The intercalation process is controlled by slow solid-phase hydrogen diffusion. For the first time, the maximum value of specific discharge capacity of 1560 C/g was obtained, which is much higher than the values known from the literature for carbon electrodes. On the basis of this value and Faraday’s law, it was assumed that the compound of C6H is formed in the limiting case of AC deep cathodic charging. The specific charge value grows at an increase in the concentration of H2SO4. The mechanism of double intercalation of sulfuric acid and hydrogen into the AC is suggested. The data obtained are used to develop a mathematical charging-discharge model for an AC electrode taking into account the EDL charging, chemisorption, and hydrogen intercalation.


activated carbon electric double layer hydrogen intercalation method of standard contact porosimetry faradaic processes pseudocapacitance solid-phase diffusion C6


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conway, B.E., Electrochemical Supercapacitors, New York: Kluwer Academic / Plenum Publishers, 1999.Google Scholar
  2. 2.
    Volfkovich, Yu.M. and Serdyuk, T.M., Russ. J. Electrochem., 2002, vol. 38, p. 935.CrossRefGoogle Scholar
  3. 3.
    Barsukov, I.V., Johnson, C., Doninger, E., and Barsukov, V.Z., New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells (NATO Science Series II: Mathematics, Physics and Chemistry), New York: Springer, 2006.CrossRefGoogle Scholar
  4. 4.
    Kotz, R. and Carlen, M., Electrochim. Acta, vol. 45, p. 2483.Google Scholar
  5. 5.
    Pandolfo, A.G. and Hollenkamp, A.F., J. Power Sources, 2006, vol. 157, p. 11.CrossRefGoogle Scholar
  6. 6.
    Simon, P. and Gogotsi, Y., Nature Materials, 2008, vol. 7, p. 845.CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Zhang, X., Yu, P., and Ma, Y., J. Power Sources, 2010, vol. 195, p. 3031.CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Zhang, X., Zhang, D., Yu, P., and Ma, P., Carbon, vol. 49, p. 573.Google Scholar
  9. 9.
    Lu, W., Qu, L., Henry, K., and Dai, L., J. Power Sources, 2009, vol. 189, p. 1270.CrossRefGoogle Scholar
  10. 10.
    Stoller, M.D., Park, S., and Yanwu, Z., An, J., and Ruoff, R.S., Nano Letters, 2008, vol. 8, p. 3498.CrossRefGoogle Scholar
  11. 11.
    Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., Govindaraj, A., and Rao, C.N.R., J. Chem. Sci., 2008, vol. 120, p. 9.CrossRefGoogle Scholar
  12. 12.
    Zhang, H., Cao, G., Yang, Y., and Gu, Z., J. Electrochem. Soc., 2008, vol. 155.Google Scholar
  13. 13.
    Bakhmatyuk, B.P., Venhryn, B.Y., Grygorchak, I.I., Micov, M.M., and Kulyk, Y., Electrochim. Acta, 2007, vol. 52, p. 6604.CrossRefGoogle Scholar
  14. 14.
    Fang, B. and Binder, L., J. Power Sources, 2006, vol. 163, p. 616.CrossRefGoogle Scholar
  15. 15.
    Centeno, T. and Stoeckli, F., Electrochim. Acta, vol. 52, p. 560.Google Scholar
  16. 16.
    Bleda-Martinez, M.J., Agull, J.A., Lozano-Castell, D., Morall, E., Cazorla-Amors, D., and Linares-Solano, A., Carbon, 2005, vol. 43, p. 2677.CrossRefGoogle Scholar
  17. 17.
    Vol’fkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestinin, A.V., Elektrokhimicheskaya Energetika, 2008, vol. 8, p. 106.Google Scholar
  18. 18.
    Izmailova, M.Yu., Rychagov, A.Yu., Denshchikov, K.K., Volfkovich, Yu.M., Lozinskaya, E.I., and Shaplov A.S., Russ. J. Electrochem., 2009, vol. 45, p. 949.CrossRefGoogle Scholar
  19. 19.
    Rychagov, A.Yu. and Volfkovich, Yu.M., Russ. J. Electrochem., 2009, vol. 45, p. 304.CrossRefGoogle Scholar
  20. 20.
    Volfkovich, Yu.M., Mazin, V.M., and Urisson, N.A., Russ. J. Electrochem., 1998, vol. 34, p. 740.Google Scholar
  21. 21.
    Vol’fkovich, Yu.M., Petrii, O.A., Zaitsev, A.A., and Kovrigina, I.V., Vestn. Mosk. Un-ta, Ser. 2, Khim., 1988, vol. 29, no. 2, p. 173.Google Scholar
  22. 22.
    Volfkovich, Yu.M., Bagotzky, V.S., Zolotova, T.K., and Pisarevskaya, E.Yu., Electrochim. Acta, 1996, vol. 41, p. 1905.CrossRefGoogle Scholar
  23. 23.
    Volfkovich, Yu.M., Sergeev, A.G., Zolotova, T.K., Afanasiev, S.D., Efimov, O.N., and Krinichnaya, E.P., Electrochim. Acta, 1999, vol. 44, p. 1543.CrossRefGoogle Scholar
  24. 24.
    Fernandez, S., Cartro, E.B., Real, S.G., and Martines, M.E., Internat. J. Hydrogen Energy, 2009, vol. 34, p. 8115.CrossRefGoogle Scholar
  25. 25.
    Bakhmatyuk, B.P., Venhryn, B.Ya., Grigorchak, I.I., Micov, M.M., and Kulik, Yu.O., Electrochim. Acta, vol. 52, p. 6604.Google Scholar
  26. 26.
    Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., Colloid and Surfaces A: Physicochemical and Engineering Aspects, 2001, vol. 187–188, p. 349.CrossRefGoogle Scholar
  27. 27.
    Frumkin, A.N., Bagotskii, V.S., Iofa, Z.A., and Kabanov, B.N., Kinetika elektrodnykh protsessov (Kinetics of Electrode Processes), Moscow: Izd-vo MGU, 1952.Google Scholar
  28. 28.
    Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.Google Scholar
  29. 29.
    Ubellode, A.R. and Lewis, F.A., Graphite and its crystal compounds, Oxford, 1960Google Scholar
  30. 30.
    Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Interlayer Compounds and Composites on Its Basis), Moscow: Aspekt Press, 1997.Google Scholar
  31. 31.
    Sorokina, N.E., Nikol’skaya, I.V., Ionov, S.G., and Avdeev, V.V., Izv. Akad. Nauk, Ser. Khim., 2005, vol. 54, p. 1.Google Scholar
  32. 32.
    Yakovlev, V.Yu., Fomkin, A.A., and Tvardovski, A.V., J. Colloid Interface Sci., 2004, vol. 280, p. 305.CrossRefGoogle Scholar
  33. 33.
    Rychagov, A.Yu., Volfkovich, Yu.M., and Urisson, N.A., Russ. J. Electrochem., 2001, vol. 37, p. 1172.CrossRefGoogle Scholar
  34. 34.
    Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: In-t kataliza, 1995.Google Scholar
  35. 35.
    Delahay, P., Double Layer and Electrode Kinetics, London, New York: John Wiley and Sons, 1965.Google Scholar
  36. 36.
    Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.Google Scholar
  37. 37.
    Belyakov, A.I., Volfkovich, Yu.M., Shmatko, P.A., et al., US Patent 6.195.252 BI, 2001.Google Scholar
  38. 38.
    Volfkovich, Yu.M. and Shmatko, P.A., US Patent 6.628.504, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yu. M. Vol’fkovich
    • 1
  • A. A. Mikhalin
    • 1
  • D. A. Bograchev
    • 1
  • V. E. Sosenkin
    • 1
    Email author
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations