Russian Journal of Electrochemistry

, Volume 47, Issue 11, pp 1205–1210

Dimerization and protonation reactions of nitrosonitrobenzenes radical anions

  • L. V. Mikhal’chenko
  • M. A. Syroeshkin
  • M. Yu. Leonova
  • A. S. Mendkovich
  • A. I. Rusakov
  • V. P. Gul’tyai
Article

Abstract

The electrochemical behavior of 2-, 3-, and 4-nitrosonitrobenzenes (NNB) in DMF (with Bu4NClO4 suppoting salt) in the presence and in the absence of different proton donors (water, phenol, benzoic, acetic, chloroacetic, and sulfuric acids) is studied by the methods of cyclic voltammetry, chronoamperometry and also by electrolysis at the controlled potential. The electrochemical reduction of these compounds is shown to preferentially afford either monomeric (N-nitrophenylhydroxylamines) or dimeric (azoxy compounds) products, which is determined by the interplay between reactions of protonation and dimerization of NNB radical anions. The dimerization reactions proceed fast and reversibly to afford the corresponding dimeric dianions with the basicity much higher as compared with NNB radical anions as the result of which the monomeric products are formed in the presence of “strong” proton donors and the dimeric products form in the presence of “weak” proton donors. Like the effective rate of formation of dimeric products, the basicity of radical anions increases in the row 4- < 3- < 2-NNB.

Keywords

nitrosonitrobenzene electroreduction radical anions cyclic voltammetry controlled potential electrolysis protonation dimerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gowenlock, B.G. and Richter-Addo, G.B., Chem. Rev., 2004, vol. 104, p. 3315.CrossRefGoogle Scholar
  2. 2.
    Adam, W. and Krebs, O., Chem. Rev., 2003, vol. 103, p. 4131.CrossRefGoogle Scholar
  3. 3.
    Zuman, P. and Shah, B., Chem. Rev., 1994, vol. 94, p. 1621.CrossRefGoogle Scholar
  4. 4.
    Bollo, S., Finger, S., Sturm, J.C., Nunez-Vergara, L.J., and Squella, J.A., Electrochim. Acta, 2007, vol. 52, p. 4892.CrossRefGoogle Scholar
  5. 5.
    Nunez-Vergara, L.J., Santander, P., Navarrete-Encina, P.A., Valenzuela, J., Sturm, J.C., and Squella, J.A., J. Electrochem. Soc., 2006, vol. 153, p. 144.CrossRefGoogle Scholar
  6. 6.
    Nunez-Vergara, L.J., Santander, P., Navarrete-Encina, P.A., and Squella, J.A., J. Electroanal. Chem., 2005, vol. 580, p. 135.CrossRefGoogle Scholar
  7. 7.
    Lipsztajn, M., Krygowski, T.M., Laren, E., and Galus, Z., J. Electroanal. Chem., 1974, vol. 57, p. 339.CrossRefGoogle Scholar
  8. 8.
    Steudel, E., Posdorfer, J., and Schindler, RN., Electrochim. Acta, 1995, vol. 40, p. 1587.CrossRefGoogle Scholar
  9. 9.
    Nunez-Vergara, L.J., Squella, J.A., Olea-Azar, C., Bollo, S., Navarrete-Encina, P.A., and Sturm, J.C., Electrochim. Acta, 2000, vol. 45, p. 3555.CrossRefGoogle Scholar
  10. 10.
    Asirvatham, M.R. and Hawley, M.D., J. Electroanal. Chem., 1974, vol. 57, p. 179.Google Scholar
  11. 11.
    Grimshaw, J., Electrochemical Reactions and Mechanisms in Organic Chemistry, Amsterdam: Elsevier, 2000.Google Scholar
  12. 12.
    Lipsztajn, M., Krygowski, T.M., Laren, E., and Galus, Z., J. Electroanal. Chem., 1974, vol. 54, p. 313.CrossRefGoogle Scholar
  13. 13.
    Fry, A.J., Supplement F2: The Chemistry of Amino, Nitroso, Nitro and Related Groups, Patai, S., Ed., New York: Wiley, 1996.Google Scholar
  14. 14.
    Zuman, P. and Fijalek, Z., J. Electroanal. Chem., 1990, vol. 296, p. 589.CrossRefGoogle Scholar
  15. 15.
    Syroeshkin, M.A., Mikhalchenko, L.V., Mendkovich, A.S., Gul’tyai, V.P., and Rusakov, A.I., Chem. Listy, 2009, vol. 103, p. 243.Google Scholar
  16. 16.
    Mendkovich, A.S., Syroeshkin, M.A., Mikhalchenko, L.V., Mikhailov, M.N., Rusakov, A.I., and Gul’tyai, V.P., Int. J. Electrochem., 2011, vol. 2011, ID 346043, doi 10.4061/2011/346043.Google Scholar
  17. 17.
    Rusakov, A.I., Mendkovich, A.S., Gul’tyai, V.P., and Orlov, V.Yu., Struktura i reaktsionnaya sposobnost’ organicheskikh anion-radikalov (Structure and Reactivity of Organic Radical Anions), Moscow: Mir, 2005.Google Scholar
  18. 18.
    Panicheva, S.E. and Filanovskii, B.K., Zavod. Lab., 1989, vol. 55, p. 519.Google Scholar
  19. 19.
    Macias-Ruvalcaba, N.A. and Evans, D.H., J. Phys. Chem. B, 2005, vol. 109, p. 14642.CrossRefGoogle Scholar
  20. 20.
    Melnikov, E.B., Suboch, G.A., and Belyaev, E.Y., Russ. J. Org. Chem., 1995, vol. 31, p. 1849.Google Scholar
  21. 21.
    Alway, F.Y., Ber. Deutsch. Chem. Ges., 1903, vol. 36, p. 2530.CrossRefGoogle Scholar
  22. 22.
    McIntyre, J. and Simpson, J.C.E., J. Chem. Soc., 1952, p. 2606.Google Scholar
  23. 23.
    Kuhn, R. and Weygand, F., Ber. Deutsch. Chem. Ges., 1936, vol. 69, p. 1969.CrossRefGoogle Scholar
  24. 24.
    Brand, K., Ber. Deutsch. Chem. Ges., 1905, vol. 4, p. 4006.CrossRefGoogle Scholar
  25. 25.
    Lipilin, D.L., Churakov, A.M., Ioffe, S.L., Strelenko, Y.A., and Tartakovsky, V.A., Eur. J. Org. Chem., 1999, p. 29.Google Scholar
  26. 26.
  27. 27.
    Hammerich, O. and Parker, V.D., Acta Chem. Scand. B, 1981, vol. 35, p. 341.CrossRefGoogle Scholar
  28. 28.
    Amatore, C., Pinson, J., and Saveant, J.-M., J. Electroanal. Chem., 1982, vol. 137, p. 143.CrossRefGoogle Scholar
  29. 29.
    Hammerich, O. and Parker, V.D., Acta Chem. Scand., 1983, vol. 37, p. 379.CrossRefGoogle Scholar
  30. 30.
    Costentin, C. and Saveant, J.-M., J. Electroanal. Chem., 2004, vol. 564, p. 99.CrossRefGoogle Scholar
  31. 31.
    Abe, T. and Ikegami, Y., Bull. Chem. Soc. Jpn., 1976, vol. 49, p. 3227.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. V. Mikhal’chenko
    • 1
  • M. A. Syroeshkin
    • 1
  • M. Yu. Leonova
    • 1
  • A. S. Mendkovich
    • 1
  • A. I. Rusakov
    • 2
  • V. P. Gul’tyai
    • 1
  1. 1.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations