Advertisement

Russian Journal of Electrochemistry

, Volume 47, Issue 12, pp 1394–1398 | Cite as

PbO2-SnO2 composite anode with interconnected structure for the electrochemical incineration of phenol

  • Lin Wei
  • Xuhui Mao
  • An Lin
  • Fuxing Gan
Article

Abstract

A PbO2-SnO2 composite anode with interconnected structure is prepared for organics electro-incineration through a two-step method, thermal-decomposition process and subsequent low-current density electrodeposition process. The element mapping, together with the impedance spectra of the composite electrode, confirms that an interconnected architecture of SnO2 and PbO2 grains, instead of a lamellar structure, was obtained on the Ti substrate. A lower electrodeposition current density (≤10 mA cm−2) is very crucial for the formation of a porous surface and an interconnected architecture of two oxides inside. The asprepared electrode exhibits an enhanced electrocatalytic activity on the mineralization of phenol and a long service life due to the interconnected architecture, which helps to utilize the merits of these two metal oxides simultaneously. This two-step method also provides us a novel and facile way to fabricate a series of composite material such as oxide-oxide, oxide-metal composite electrodes.

Keywords

interconnected structure lead dioxide tin dioxide electrochemical incineration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, Z., Zhou, M., and Wang, D., Chemosphere, 2002, vol. 48, p. 1089.CrossRefGoogle Scholar
  2. 2.
    Tenne, R., Patel, K., Hashimoto, K., and Fujishima, A., Journal of Electroanalytical Chemistry, 1993, vol. 347, p. 409.CrossRefGoogle Scholar
  3. 3.
    Iniesta, J., Michaud, P.A., Panizza, M., and Comninellis, C., Electrochemistry Communications, 2001, vol. 3, p. 346.CrossRefGoogle Scholar
  4. 4.
    Tong, S.P., Ma, C.A., and Feng, H., Electrochimica Acta, 2008, vol. 53, p. 3002.CrossRefGoogle Scholar
  5. 5.
    Feng, Y.J. and Li, X.Y., Water Research, 2003, vol. 37, p. 2399.CrossRefGoogle Scholar
  6. 6.
    Mao, X.H., Tian, F., Gan, F.X., Lin, A., and Zhang, X.J., Russian Journal of Electrochemistry (Translation of Elektrokhimiya), 2008, vol. 44, p. 802.CrossRefGoogle Scholar
  7. 7.
    Kong, J.T., Shi, S.Y., Zhu, X.P., and Ni, J.R., Journal of Environmental Sciences, 2007, vol. 19, p. 1380.CrossRefGoogle Scholar
  8. 8.
    Tong, S.P., Ma, C.A., and Feng, H., Electrochimica Acta, 2008, vol. 53, p. 3002.CrossRefGoogle Scholar
  9. 9.
    Silva, C.G. and Faria, J.L., Chem. Sus. Chem., 2010, vol. 3, p. 609.Google Scholar
  10. 10.
    Chun, H.J., Kim, D.B., Lim, D.H., Lee, W.D., and Lee, H.I., International Journal of Hydrogen Energy, 2010, vol. 35, p. 6399.CrossRefGoogle Scholar
  11. 11.
    Jeon, M.K., Zhang, Y.A., and McGinn, P.J., Electrochimica Acta, 2010, vol. 55, p. 5318.CrossRefGoogle Scholar
  12. 12.
    Haan, J.L., Stafford, K.M., and Masel, R.I., Journal of Physical Chemistry C, 2010, vol. 114, p. 11665.CrossRefGoogle Scholar
  13. 13.
    Yang, X.P., Zou, R.Y., Huo, F., Cai, D.C., and Xiao, D., Journal of Hazardous Materials, 2009, vol. 164, p. 367.CrossRefGoogle Scholar
  14. 14.
    Song, S., Fan, J.Q., He, Z.Q., Zhan, L.Y., Liu, Z.W., Chen, J.M., and Xu, X.H., Electrochimica Acta, 2010, vol. 55, p. 3606.CrossRefGoogle Scholar
  15. 15.
    Polcaro, A.M., Palmas, S., Renoldi, F., and Mascia, M., Journal of Applied Electrochemistry, 1999, vol. 29, p. 147.CrossRefGoogle Scholar
  16. 16.
    Wu, Z.C. and Zhou, M.H., Environmental Science & Technology, 2001, vol. 35, p. 2698.CrossRefGoogle Scholar
  17. 17.
    Abaci, S., Pekmez, K., Hokelek, T., and Yildiz, A., Journal of Power Sources, 2000, vol. 88, p. 232.CrossRefGoogle Scholar
  18. 18.
    Ghasemi, S., Mousavi, M.F., and Shamsipur, M., Electrochimica Acta, 2007, vol. 53, p. 459.CrossRefGoogle Scholar
  19. 19.
    Zhou, X.L., Ye, Z.G., Hua, X.Z., Zou, A.H., and Dong, Y.H., Journal of Solid State Electrochemistry, 2010, vol. 14, p. 1213.CrossRefGoogle Scholar
  20. 20.
    Hu, J.M., Zhang, J.Q., and Cao, C.N., International Journal of Hydrogen Energy, 2004, vol. 29, p. 791.CrossRefGoogle Scholar
  21. 21.
    Munichandraiah, N., Journal of Applied Electrochemistry, 1992, vol. 22, p. 825.CrossRefGoogle Scholar
  22. 22.
    Abaci, S., Tamer, U., Pekmez, K., and Yildiz, A., Electrochimica Acta, 2005, vol. 50, p. 3655.CrossRefGoogle Scholar
  23. 23.
    Zhang, H.M., Zhou, W.Q., Du, Y.K., Yang, P., and Wang, C.Y., Electrochemistry Communications, 2010, vol. 12, p. 882.CrossRefGoogle Scholar
  24. 24.
    Chu, Q.X., Liang, Z.H., Sun, Y.F., Wang, R.P., and Fan, C.M., Rare Metal Materials and Engineering, 2009, vol. 38, p. 821.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.School of Resource and Environmental ScienceWuhan UniversityWuhanP.R. China
  2. 2.State Key Laboratory for Corrosion and Protection of MetalsShenyangP.R. China

Personalised recommendations