Advertisement

Russian Journal of Electrochemistry

, Volume 47, Issue 6, pp 663–670 | Cite as

The effect of phase composition on the transport properties of composites La0.8Sr0.2Fe0.7Ni0.3O3 − δ-Ce0.9Gd0.1O1.95

  • Yu. S. OkhlupinEmail author
  • M. V. Ananyev
  • N. F. Uvarov
  • Yu. N. Bespalko
  • S. N. Pavlova
  • V. A. Sadykov
Article

Abstract

Full conductivity, diffusion and oxygen exchange processes in composites (100 − x)La0.8Sr0.2Fe0.7Ni0.3O3 − δxCe0.9Gd0.1O1.95 (x is the volume fraction, 0 ≤ x ≤ 71.1%) at 700°C over the oxygen partial pressure range from 0.2 to 3 × 10−3 atm are studied by the electrical conductivity relaxation method. The composites’ conductivity was shown to decrease monotonically with the increasing of Ce0.9Gd0.1O1.95 fraction, while the oxygen chemical diffusion coefficient increased. The oxygen exchange constant is higher for the composites than for the individual phases of La0.8Sr0.2Fe0.7Ni0.3O3 − δ and Ce0.9Gd0.1O1.95. Possible reason of the dependence of the parameters D chem and k chem on the temperature, oxygen pressure, and the composite composition is the effect of the interface on the oxygen transfer processes. Most effective oxygen transfer occurs in the composites whose composition approaches La0.8Sr0.2Fe0.7Ni0.3O3 − δ-Ce0.9Gd0.1O1.95 (x = 71%).

Keywords

electrical conductivity relaxation composites La0.8Sr0.2Fe0.7Ni0.3O3 − δ-Ce0.9Gd0.1O1.95 oxygen diffusion oxygen exchange cathodic materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rieu, M., Sayers, R., Laguna-Bercero, M.A., Skinner, S.J., Lenormand, P., and Ansart, F., ECS Transactions, 2009, vol. 25, p. 2565.CrossRefGoogle Scholar
  2. 2.
    Sadykov, V. Pavlova, S., et al., Electrochem. Soc. Transactions, 2009, vol. 25, p. 2403.Google Scholar
  3. 3.
    Sunarso, J. Baumann, S., et al., J. Membrane Sci., 2008, vol. 320, p. 13.CrossRefGoogle Scholar
  4. 4.
    Cutler, R.A. and Meixner, D.L., Solid State Ionics, 2003, vol. 159, p. 9.CrossRefGoogle Scholar
  5. 5.
    Dusastre, V. and Kilner, J.A., Solid State Ionics, 1999, vol. 126, p. 163.CrossRefGoogle Scholar
  6. 6.
    Jorgensen, M.J., Primdahl, S., Bagger, C., and Mogensen, M., Solid State Ionics, 2001, vol. 139, p. 1.CrossRefGoogle Scholar
  7. 7.
    Esquirol, Au., Kilner, J., and Brandon, N., Solid State Ionics, 2004, vol. 175, p. 63.CrossRefGoogle Scholar
  8. 8.
    Ji, Y., Kilner, J.A., and Carolan, M.F., Solid State Ionics, 2005, vol. 176, p. 937.CrossRefGoogle Scholar
  9. 9.
    Steele, B.C.H., Solid State Ionics, 2000, vol. 134, p. 3.CrossRefGoogle Scholar
  10. 10.
    Mogensen, M., Sammes, N.M., and Tompsett, G.A., Solid State Ionics, 2000, vol. 129, p. 63.CrossRefGoogle Scholar
  11. 11.
    Sadykov, V. Kharlamova, T., et al., Mater. Res. Soc. Symp. Proc., 2008, vol. 1098 (1098-HH07-06), p. 1.CrossRefGoogle Scholar
  12. 12.
    Kharlamova, T. Smirnova, A., et al., ECS Transactions, 2008, vol. 13, p. 275.CrossRefGoogle Scholar
  13. 13.
    Ramadan, A.A., Gould, R.D., and Ashour, A., Thin Solid Films, 1994, vol. 239, p. 272.CrossRefGoogle Scholar
  14. 14.
    Versnel, W., Solid-State Electron., 1978, vol. 21, p. 126.CrossRefGoogle Scholar
  15. 15.
    Skovorodin, I.N., Safonov, P.G., Uvarov, N.F., Ulihin, A.S., Skovorodin, D.I., and Arakcheev, A.S., Proc. IASTED International Conf. on Automation, Control, and Information Technology, Novosibirsk, 2010, p. 183.Google Scholar
  16. 16.
    Okhlupin, Yu.S., Uvarov, N.F., Skovorodin, I.N., Safonov, P.G., Skovorodin, D.I., and Arakcheev, A., Proc. IASTED International Conf. on Automation, Control, and Information Technology, Novosibirsk, 2010, p. 195.Google Scholar
  17. 17.
    Crank, J., The Mathematics of Diffusion, Bristol: Oxford Univ. Press, 1975, p. 44.Google Scholar
  18. 18.
    Lane, J.A. and Kilner, J.A., Solid State Ionics, 2000, vol. 136–137, p. 997.CrossRefGoogle Scholar
  19. 19.
    Deng, G., Chen, Yu., Tao, M., Wu, Ch., Shen, X., and Yang, H., Electrochim. Acta, 2009, vol. 54, p. 3910.CrossRefGoogle Scholar
  20. 20.
    Bosman, A.J. and van Daal, H.J., Adv. Phys., 1970, vol. 19, p. 118.CrossRefGoogle Scholar
  21. 21.
    Goodenough, J.B., Rep. Prog. Phys., 2004, vol. 67, p. 1915.CrossRefGoogle Scholar
  22. 22.
    Navarro, L., Marques, F., and Frade, J., J. Electrochem. Soc., 1997, vol. 144, p. 267.CrossRefGoogle Scholar
  23. 23.
    Yashiro, K. Onuma, S., et al., Solid State Ionics, 2002, vol. 152–153, p. 469; Solid State Ionics, 2000, vol. 136–137, p. 927.CrossRefGoogle Scholar
  24. 24.
    Kim, S., Wang, S., Chen, X., Yang, Y.L., Wu, N., Ignatiev, A., Jacobson, A.J., and Abeles, B., J. Electrochem. Soc., 2000, vol. 147, p. 2398.CrossRefGoogle Scholar
  25. 25.
    Lane, J.A. and Kilner, J.A., Solid State Ionics, 2000, vol. 136–137, p. 927.CrossRefGoogle Scholar
  26. 26.
    Wang, S., Verma, A., Yang, Y.L., Jacobson, A.J., and Ben Abeles, Solid State Ionics, 2001, vol. 140, p. 125.CrossRefGoogle Scholar
  27. 27.
    Chen, X., Wang, S., Yang, Y.L., Smith, L., Wu, N.J., Kim, B.-I., Perry, S.S., Jacobson, A.J., and Ignatiev, A., Solid State Ionics, 2002, vol. 146, p. 405.CrossRefGoogle Scholar
  28. 28.
    Wang, S., van der Heide, P.A.W., Chavez, C., Jacobson, A.J., and Adler, S.B., Solid State Ionics, 2003, vol. 156, p. 201.CrossRefGoogle Scholar
  29. 29.
    De Souza, R.A., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 890.CrossRefGoogle Scholar
  30. 30.
    Adler, S.B., Chen, X.Y., and Wilson, J.R., J. Catal., 2007, vol. 245, p. 91.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Yu. S. Okhlupin
    • 1
    Email author
  • M. V. Ananyev
    • 2
  • N. F. Uvarov
    • 1
  • Yu. N. Bespalko
    • 3
  • S. N. Pavlova
    • 3
  • V. A. Sadykov
    • 3
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations