Advertisement

Studies of oxygen transport mechanism in electrolytes based on doped lanthanum silicate with apatite structure using techniques of oxygen isotopic heteroexchange and impedance spectroscopy

  • V. A. SadykovEmail author
  • T. S. Kharlamova
  • N. V. Mezentseva
  • S. N. Pavlova
  • E. M. Sadovskaya
  • V. S. Muzykantov
  • Yu. N. Bespalko
  • V. V. Usol’tsev
  • E. G. Zevak
  • T. A. Kriger
  • A. V. Ishchenko
  • N. F. Uvarov
  • A. S. Ulikhin
  • M. V. Chaikina
  • C. Argirusis
Article

Abstract

The work presents the results of studying the mechanism of oxygen transport for a new promising class of oxygen-containing electrolytes based on lanthanum silicate with an apatite structure using impedance spectroscopy and isotopic oxygen heteroexchange. At 1000 K, in the case of samples with an optimum composition including codoped Fe and Al, σ ∼ 3 × 10−3 to 10−2 S/cm and D* reaches ∼10−8 cm2/s, which is close to the values of YSZ and Ce0.9Gd0.1O2 − δ (GDC). Lower energies of conductivity activation and oxygen diffusion for doped apatites (∼0.5–0.8 eV instead of ∼1 eV for GDC) and also equivalence as regards exchange of all oxygen atoms within apatite agree with the model, in which oxygen mobility is determined by a nonlinear cooperative migration process of oxygen atoms with fast exchange between interstitial and regular sites.

Keywords

solid electrolytes doped lanthanum silicate with an apatite structure oxygen conductivity mechanism impedance spectroscopy isotopic oxygen heteroexchange 

References

  1. 1.
    Nakayama, S., Kageyama, T., Aono, H., and Sadaoka, Y., J. Mater. Chem., 1995, vol. 5, p. 1801.CrossRefGoogle Scholar
  2. 2.
    Nakayama, S. and Sakamoto, M., J. Eur. Ceram. Soc., 1998, vol. 18, p. 1413.CrossRefGoogle Scholar
  3. 3.
    Shaula, A.L., Kharton, V.V., Waerenborgh, J.C., Rojas, D.P., and Marques, F.M.B., J. Eur. Ceram. Soc., 2005, vol. 25, p. 2583.CrossRefGoogle Scholar
  4. 4.
    Leon-Reina, L., Losilla, E.R., Martinez-Lara, M., Bruque, S., and Aranda, M.A.G., J. Mater. Chem., 2004, vol. 14, p. 1142.CrossRefGoogle Scholar
  5. 5.
    Leon-Reina, L., Losilla, E.R., Martinez-Lara, M., Bruque, S., Llobet, A., Sheptyakovic, D.V., and Aranda, M.A.G., J. Mater. Chem., 2005, vol. 15, p. 2489.CrossRefGoogle Scholar
  6. 6.
    Leon-Reina, L., Porras-Vazquez, J.M., Losilla, E.R., and Aranda, M.A.G., Solid State Ionics, 2006, vol. 177, p. 1307.CrossRefGoogle Scholar
  7. 7.
    Gorshkov, M.Yu., Neuimin, A.D., Bogdanovich, N.M., and Bronin, D.I., Russ J. Electrochem., 2006, vol. 42, p. 737.CrossRefGoogle Scholar
  8. 8.
    Kharton, V.V., Shaula, A.L., Patrakeev, M.V., Waerenborgh, J.C., Rojas, D.P., and Vyshatko, N.P., J. Electrochem. Soc., 2004, vol. 151, p. 1236.CrossRefGoogle Scholar
  9. 9.
    Tolchard, J.R., Slater, P.R., and Islam, M.S., Adv. Funct. Mater., 2007, vol. 17, p. 2564.CrossRefGoogle Scholar
  10. 10.
    Kendrick, E., Islam, M.S., and Slater, P.R., J. Mater. Chem., 2007, vol. 17, p. 3104.CrossRefGoogle Scholar
  11. 11.
    Jones, A., Slater, P.R., and Islam, M.S., Chem. Mater., 2008, vol. 20, p. 5055.CrossRefGoogle Scholar
  12. 12.
    Kharlamova, T., Pavlova, S., Sadykov, V., Lapina, O., Khabibulin, D., Krieger, T., Zaikovskii, V., Ishchenko, A., Salanov, A., Muzykantov, V., Mezentseva, N., Chaikina, M., Uvarov, N., Frade, J., and Argirusis, C., Solid State Ionics, 2008, vol. 179, p. 1018.CrossRefGoogle Scholar
  13. 13.
    Kharlamova, T., Pavlova, S., Sadykov, V., Krieger, T., Batuev, L., Muzykantov, V., Uvarov, N., and Argirusis, C., Solid State Ionics, 2009, vol. 180, p. 796.CrossRefGoogle Scholar
  14. 14.
    Kharlamova, T., Pavlova, S., Sadykov, V., Bespalko, Y., Krieger, T., Lapina, O., Khabibulin, D., Muzykantov, V., Chaikina, M., Uvarov, N., Pavlukhin, Y., Kriventsov, V., Petrov, S., Argirusis, C., and Kaichev, V., ECS Trans., 2009, vol. 25, p. 1791.CrossRefGoogle Scholar
  15. 15.
    Kharlamova, T., Pavlova, S., Sadykov, V., Chaikina, M., Krieger, T., Ishchenko, A.., Pavlukhin, Y., Petrov, S., and Argirusis, C., Eur. J. Inorg. Chem., 2010, p. 589.Google Scholar
  16. 16.
    Béchade, E., Masson, O., Iwata, T., Julien, I., Fukuda, K., Thomas, P., and Champion, E., Chem. Mater., 2009, vol. 21, pp. 2508–2517.CrossRefGoogle Scholar
  17. 17.
    Ruiz-Trejo, E., Sirman, D.J., Baikov, Yu.M., and Kilner, J.A., Solid State Ionics, 1998, vol. 113–115, p. 565.CrossRefGoogle Scholar
  18. 18.
    Lane, J.A. and Kilner, J.A., Solid State Ionics, 2000, vol. 136–137, p. 927.CrossRefGoogle Scholar
  19. 19.
    de Ridder, M., van Welzenis, R.G., Brongersma, H.H., and Kreissig, U., Solid State Ionics, 2003, vol. 158, p. 67.CrossRefGoogle Scholar
  20. 20.
    Klier, K., Novakova, J., and Jiru, P., J. Catal., 1963, vol. 2, p. 479.CrossRefGoogle Scholar
  21. 21.
    Muzykantov, V.S., Popovskii, V.V., and Boreskov, G.K., Kinet. Katal., 1964, vol. 5, p. 624.Google Scholar
  22. 22.
    Muzykantov, V.S., Jiru, P., Klier, K., and Novakova, J., Collect. Czech. Chem. Commun., 1968, vol. 33, p. 829.Google Scholar
  23. 23.
    Muzykantov, V.S., React. Kinet. Catal. Lett., 1987, vol. 35, p. 437.CrossRefGoogle Scholar
  24. 24.
    Muzykantov, V.S., in Tr. MKhTI im. D.I. Mendeleeva. Izotopy v katalize (Transaction of D.I. Mendellev Moscow Institute of Chemical Technology. Isotopes in Catalysis), Moscow, 1987, no. 147, p. 5.Google Scholar
  25. 25.
    Muzykantov, V.S., Zudin, V.N., Rogov, V.A., Shestov, A.A., and Likholobov, V.A., Kinet. Katal., 1997, vol. 38, p. 581.Google Scholar
  26. 26.
    Muzykantov, V.S., Kemnitts, E., Sadykov, V.A., and Lunin, V.V., Kinet. Katal., 2003, vol. 44, p. 349 [Kinet. Catal. (Engl. Transl.), vol. 44, p. 319].CrossRefGoogle Scholar
  27. 27.
    Muzykantov, V.S., Kinet. Katal., 1965, vol. 6, p. 952.Google Scholar
  28. 28.
    Muzykantov, V.S., Panov, G.I., and Boreskov, G.K., Kinet. Katal., 1973, vol. 14, p. 948.Google Scholar
  29. 29.
    Boreskov, G.K. and Muzykantov, V.S., Ann. N. Y. Acad. Sci., 1973, vol. 213, p. 137.CrossRefGoogle Scholar
  30. 30.
    Sadykov, V.A., Frolova, Yu.V., Muzykantov, V.S., and Kemnitz, E., Mater. Res. Soc. Symp. Proc., 2005, vol. 835, p. 199.Google Scholar
  31. 31.
    Sadykov, V.A., Frolova, Yu.V., Muzykantov, V.S., Kemnitz, E., and Bukhtiyarov, V.I., React. Kinet. Catal. Lett., 2005, vol. 85, p. 367.CrossRefGoogle Scholar
  32. 32.
    Sadykov, V.A., Kriventsov, V.V., Moroz, E.M., and Muzykantov, V.S., Solid State Phenom., 2007, vol. 128, p. 81.CrossRefGoogle Scholar
  33. 33.
    Sadykov, V.A., Mezentseva, N.V., Alikina, G.M., and Muzykantov, V.S., Solid State Phenom., 2007, vol. 128, p. 239.CrossRefGoogle Scholar
  34. 34.
    Sadykov, V.A., Kuznetsova, T.G., Frolova-Borchert, Yu.V., and Muzykantov, V.S., Catal. Today, 2006, vol. 117, p. 475.CrossRefGoogle Scholar
  35. 35.
    Sadykov, V.A., Bulgakov, N.N., Muzykantov, V.S., et al., Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems, Boston; Dordrecht; London: Kluwer, 2004, pp. 53–74.Google Scholar
  36. 36.
    Sadykov, V.A., Kuznetsova, T.G., Alikina, G.M., and Muzykantov, V.S., New Topics in Catalysis Research, New York: Nova Publ., 2006, pp. 97–196.Google Scholar
  37. 37.
    Sadykov, V.A., Borchert, Yu.V., Alikina, G.M., and Muzykantov, V.S., Glass Phys. Chem., 2007, vol. 33, p. 320.CrossRefGoogle Scholar
  38. 38.
    Sadykov, V.A., Frolova, Yu.V., Alikina, G.M., and Muzykantov, V.S., React. Kinet. Catal. Lett., 2005, vol. 86, p. 21.CrossRefGoogle Scholar
  39. 39.
    Sadovskaya, E.M., Ivanova, Yu.A., Pinaeva, L.G., Grasso, G., Kuznetsova, T.G., van Veen, A., Sadykov, V.A., and Mirodatos, C., J. Phys. Chem. A: General, 2007, vol. 111, p. 4498.CrossRefGoogle Scholar
  40. 40.
    Smirnova, A., Sadykov, V., Muzykantov, V., Sammes, N., Kilner, J., Irvine, J., Kosacki, I., and Uvarov, N., Mater. Res. Soc. Symp. Proc., 2007, vol. 972, pp. 1–6.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Sadykov
    • 1
    • 2
    Email author
  • T. S. Kharlamova
    • 1
  • N. V. Mezentseva
    • 1
  • S. N. Pavlova
    • 1
  • E. M. Sadovskaya
    • 1
  • V. S. Muzykantov
    • 1
  • Yu. N. Bespalko
    • 1
  • V. V. Usol’tsev
    • 1
  • E. G. Zevak
    • 2
  • T. A. Kriger
    • 1
  • A. V. Ishchenko
    • 1
  • N. F. Uvarov
    • 3
  • A. S. Ulikhin
    • 3
  • M. V. Chaikina
    • 3
  • C. Argirusis
    • 4
    • 5
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Clausthal University of Technology (TUC)Clausthal-ZellerfeldGermany
  5. 5.Department of Chemical TechnologyNational Technical University of AthensAthensGreece

Personalised recommendations