Russian Journal of Electrochemistry

, Volume 46, Issue 1, pp 1–17 | Cite as

Electrochemical properties of transition metal complexes with C60 and C70 fullerne ligands (review)

  • L. I. Denisovich
  • S. M. Peregudova
  • Yu. N. Novikov
Article

Abstrac

t-The electrochemical properties of exohedral complexes of transition metals with metallofragments coordinated to C60 and C70 fullerene ligands in different coordination modes are surveyed. The effect of the nature, composition, and structure of metal-containing fragments on the electrochemical properties of these complexes and stability of products formed in the oxidation and reduction of complexes is discussed.

Key words

metal complexes fullerenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sokolov, V.I. and Stankevich, I.V., Usp. Khim., 1993, vol. 62, p. 455.Google Scholar
  2. 2.
    Sokolov, V.I., Koord. Khim., 2007, vol. 33, no. 10, p. 1.Google Scholar
  3. 3.
    Prato, M., J. Mater.Chem., 1997, vol. 7, p. 1097.CrossRefGoogle Scholar
  4. 4.
    Prato, M. and Maggini, M., Acc. Chem. Res., 1998, vol. 31, p. 519.CrossRefGoogle Scholar
  5. 5.
    Echegoyen, L. and Echegoyen, L.E., Acc. Chem. Res., 1998, vol. 31, p. 593.CrossRefGoogle Scholar
  6. 6.
    Sidorov, L.N. and Yurovskaya, M.A., Fullereny: Uchebnoe posobie (Fullerenes: Study Book), Moscow: Ekzamen, 2005.Google Scholar
  7. 7.
    Yanilkin, V.V., in Elektrokhimiya organicheskikh soedinenii v nachale 21 veka (Electrochemistry of Organic Compounds in the Beginning of 21st Century), Moscow: Sputnik, 2008.Google Scholar
  8. 8.
    Reed, C.A. and Bolskar, R.D., Chem. Rev., 2000, vol. 100, p. 1075.CrossRefGoogle Scholar
  9. 9.
    Balch, A.L. and Olmstead, M.M., Chem. Rev., 1998, vol. 98, p. 2123.CrossRefGoogle Scholar
  10. 10.
    Herranz, M.A., Diederich, F., and Echegoyen, L., Eur. J. Org. Chem., 2004, p. 2288.Google Scholar
  11. 11.
    Herranz, M.A., Cox, C.T., Balch, A.L., and Echegoyen, L., J. Org. Chem., 2003, vol. 68, p. 5009.CrossRefGoogle Scholar
  12. 12.
    Xie, Q., Petez-Cordero, E., and Echegoyen, L., J. Am. Chem. Soc., 1992, vol. 114, p. 3978.CrossRefGoogle Scholar
  13. 13.
    Xie, Q., Arias, F., and Echegoyen, L., J. Am. Chem. Soc., 1993, vol. 115, p. 9818.CrossRefGoogle Scholar
  14. 14.
    Bashilov, V.V., Tumanskii, B.L., Petrovskii, P.V., and Sokolov, V.I., Izv. Akad. Nauk, Ser. Khim., 1999, p. 575.Google Scholar
  15. 15.
    Lerke, S.A., Parkinson, B.A., Evans, D.H., and Fagan, P.J., J. Am. Chem. Soc., 1992, vol. 114, p. 7807.CrossRefGoogle Scholar
  16. 16.
    Magdesieva, T.V., Bashilov, V.V., Gorel’skii, S.I., Sokolov, V.I., and Butin, K.P., Izv. Akad. Nauk, Ser. Khim., 1994, no. 12, p. 2153.Google Scholar
  17. 17.
    Lerke, S.A., Evans, D.H., and Fagan, P.J., J. Electroanal. Chem., 1995, vol. 383, p. 127.CrossRefGoogle Scholar
  18. 18.
    Bashilov, V.V., Dolgushin, F.M., Petrovskii, P.V., Sokolov, V.I., Sada, M., Benincori, T., and Zotti, G., J. Organomet. Chem., 2005, vol. 690, p. 4330.CrossRefGoogle Scholar
  19. 19.
    Magdesieva, T.V., Bashilov, V.V., Kravchuk, D.N., Dolgushin, F.M., Butin, K.P., and Sokolov, V.I., Izv. Akad. Nauk, Ser. Khim., 2004, no. 4, p. 759.Google Scholar
  20. 20.
    Bashilov, V.V., Magdesieva, T.V., Kravchuk, D.N., Petrovskii, P.V., Ginzburg, A.G., Butin, K.P., and Sokolov, V.I., J. Organomet. Chem., 2000, vol. 599, p. 37.CrossRefGoogle Scholar
  21. 21.
    Usatov, A.V., Peregudova, S.M., Denisovich, L.I., Vorontsov, E.V., Vinogradova, L.E., and Novikov, Y.N., J. Organomet. Chem., 2000, vol. 599, p. 87.CrossRefGoogle Scholar
  22. 22.
    Denisovich, L.I., Peregudova, S.M., Usatov, A.V., Sigan, A.L., and Novikov, Yu.N., Izv. Akad. Nauk, Ser. Khim., 1997, no. 7, p. 1308.Google Scholar
  23. 23.
    Peregudova, S.M., Denisovich, L.I., Martynova, E.V., Tsikalova, M.V., and Novikov, Yu.N., Elektrokhimiya, 2008, vol. 44, p. 268.Google Scholar
  24. 24.
    Chernega, A.N., Green, M.L.H., Haggitt, J., and Stephens, A.H.H., J. Chem. Soc., Dalton Trans., 1998, no. 5, p. 755.Google Scholar
  25. 25.
    Koefod, R.S., Xu, C., Lu, W., and Shapley, J.R., J. Phys. Chem., 1992, vol. 96, p. 2928.CrossRefGoogle Scholar
  26. 26.
    Zanello, P., Laschi, F., Fontani, M., Mealli, C., Lenco, A., Tang, K., Jin, X., and Li, L., J. Chem. Soc., Dalton Trans., 1999, p. 965.Google Scholar
  27. 27.
    Zanello, P., Laschi, F., Cinquantini, A., Fontani, M., Tang, K., Jin, X., and Li, L., Eur. J. Inorg. Chem., 2000, p. 1345.Google Scholar
  28. 28.
    Zanello, P., Laschi, F., Fontani, M., Song, L.-C., and Zhu, Y.-H., J. Organomet. Chem., 2000, vol. 593–594, p. 7.CrossRefGoogle Scholar
  29. 29.
    Iikura, H., Mori, S., Sawamura, M., and Kuninobu, Y., J. Org. Chem., 1997, vol. 62, p. 7912.CrossRefGoogle Scholar
  30. 30.
    Sawamura, M., Kuninobu, Y., Toganoh, M., Matsuo, Y., Yamanaka, M., and Nakamura, E., J. Am. Chem. Soc., 2002, vol. 124, p. 9354.CrossRefGoogle Scholar
  31. 31.
    Matsuo, Y., Kuninobu, Y., Ito, S., and Nakamura, E., Chem. Lett., 2004, vol. 33, p. 68.CrossRefGoogle Scholar
  32. 32.
    Matsuo, Y. and Nakamura, E., Organometallics, 2003, vol. 22, p. 2554.CrossRefGoogle Scholar
  33. 33.
    Sawamura, M., Kuninobu, Y., and Nakamura, E., J. Am. Chem. Soc., 2000, vol. 122, p. 12407.CrossRefGoogle Scholar
  34. 34.
    Matsuo, Y., Iwashita, A., and Nakamura, E., Organometallics, 2005, vol. 24, p. 89.CrossRefGoogle Scholar
  35. 35.
    Kuninobu, Y., Matsuo, Y., Toganoh, M., Sawamura, M., and Nakamura, E., Organometallics, 2004, vol. 23, p. 3259.CrossRefGoogle Scholar
  36. 36.
    Toganoh, M., Matsuo, Y., and Nakamura, E., J. Organomet. Chem., 2003, vol. 683, p. 295.CrossRefGoogle Scholar
  37. 37.
    Park, J.T., Cho, J.-J., Song, H., Son, Y., and Kwak, J., Inorg. Chem., 1997, vol. 36, p. 2698.CrossRefGoogle Scholar
  38. 38.
    Song, H., Lee, K., Park, J.T., and Choi, M-G., Organometallics, 1998, vol. 17, p. 4477.CrossRefGoogle Scholar
  39. 39.
    Kim, K.H., Jung, J., and Han, Y.-K., Organometallics, 2004, vol. 23, p. 3865.CrossRefGoogle Scholar
  40. 40.
    Song, H., Lee, Y., Choi, Z.-H., Lee, K., Park, J.T., Kwak, J., and Choi, M.-G., Organometallics, 2001, vol. 20, p. 3139.CrossRefGoogle Scholar
  41. 41.
    Lee, K., Song, H., Kim, B., Park, J.T., Park, S., and Choi, M.-G., J. Am. Chem. Soc., 2002, vol. 124, p. 2872.CrossRefGoogle Scholar
  42. 42.
    Lee, K., Song, H., and Park, J.T., Acc. Chem. Res., 2003, vol. 36, p. 78.CrossRefGoogle Scholar
  43. 43.
    Lee, G., Cho, Y.-J., Park, B.K., Lee, K., and Park, J.T., J. Am. Chem. Soc., 2003, vol. 125, p. 13920.CrossRefGoogle Scholar
  44. 44.
    Lee, K., Choi, Y.J., Cho, Y.-J., Lee, C.J., Song, H., Lee, C.H., Lee, Y.S., and Park, J.T., J. Am. Chem. Soc., 2004, vol. 126, p. 9837.CrossRefGoogle Scholar
  45. 45.
    Balch, A.L., Costa, D.A., Fawcett, R., and Winkler, K., J. Phys. Chem. B, 1996, vol. 100, p. 4823.CrossRefGoogle Scholar
  46. 46.
    Park, B.K., Lee, G., Kim, K., Kang, H., Lee, C.Y., Miah, M.A., Jung, J., Han, Y.-K., and Park, J.T., J. Am. Chem. Soc., 2006, vol. 128, p. 11160.CrossRefGoogle Scholar
  47. 47.
    Cho, Y.-J., Song, H., Lee, K., Kim, K., Kwak, J., Kim, S., and Park, J.T., J. Chem. Soc., Chem. Commun., 2002, p. 2966.Google Scholar
  48. 48.
    Fujiwara, K. and Komatsu, K., Org. Lett., 2002, vol. 4, p. 1039.CrossRefGoogle Scholar
  49. 49.
    Zanello, P., de Biani, F.F., Cinquantini, A., and Grigiotti, E., C. R. Chim., 2005, vol. 8, p. 1655.Google Scholar
  50. 50.
    Cho, Y.-J., Ahn, T.K., Song, H., Kim, K.S., Lee, C.Y., Seo, W.S., Kim, S.K., Kim, D., and Park, J.T., J. Am. Chem. Soc., 2005, vol. 127, p. 2380.CrossRefGoogle Scholar
  51. 51.
    Babcock, A.J., Li, J., Lee, K., and Shapley, J.R., Organometallics, 2002, vol. 21, p. 3940.CrossRefGoogle Scholar
  52. 52.
    Magdesieva, T.V., Bashilov, V.V., Kravchuk, D.N., Sokolov, V.I., and Butin, K.P., Elektrokhimiya, 1999, vol. 35, p. 1125.Google Scholar
  53. 53.
    Balch, A.L., Costa, D.A., and Winkler, K., J. Am. Chem. Soc., 1998, vol. 120, p. 9614.CrossRefGoogle Scholar
  54. 54.
    Alpatova, N.M., Gol’dshleger, N.F., and Ovsyannikova, E.F., Elektrokhimiya, 2008, vol. 44, p. 85.Google Scholar
  55. 55.
    Bossard, C., Rigaut, S., Astruc, D., Delville, M.-H., Felix, G., Fevrier-Bouvier, A., Amiel, J., Flandrois, S., and Delhaes, P., J. Chem. Soc., Chem. Commun., 1993, p. 333.Google Scholar
  56. 56.
    Foss, C.A., Feldheim, D.L., Lawson, D.L., Dorhout, P.K., Eliot, C.M., Martin, C.R., and Parkinson, B.A., J. Electrochem. Soc., 1993, vol. 140, p. L84.CrossRefGoogle Scholar
  57. 57.
    Stinchcombe, J., Penicaud, A., Bhyrappa, P., Boyd, P.D.W., and Reed, C.A., J. Am. Chem. Soc., 1993, vol. 115, p. 5212.CrossRefGoogle Scholar
  58. 58.
    Wan, W.C., Liu, X., Sweeney, G.M., and Broderick, W.E., J. Am. Chem. Soc., 1995, vol. 117, p. 9580.CrossRefGoogle Scholar
  59. 59.
    Liu, X.H., Wan, W.C., Owens, S.M., and Broderick, W.E., J. Am. Chem. Soc., 1994, vol. 116, p. 5489.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. I. Denisovich
    • 1
  • S. M. Peregudova
    • 1
  • Yu. N. Novikov
    • 1
  1. 1.Nesmeyanov Institute of Organometallic CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations