Russian Journal of Electrochemistry

, Volume 45, Issue 4, pp 374–381 | Cite as

Mechanism of proton conductivity in polyvinyl alcohol-phenolsulfonic acid membranes from 1H and 13C NMR data

  • V. I. Volkov
  • A. I. Rebrov
  • E. A. Sanginov
  • E. M. Anokhin
  • S. L. Shestakov
  • A. A. Pavlov
  • A. V. Maksimychev
  • Yu. A. Dobrovol’skii
Article

Abstract

With line narrowing during magic angle spinning in solid-state NMR, molecular mobility and hydration in composite membranes based on polyvinyl alcohol (PVA) and phenol-2,4-disulfonic acid (PSA) were studied as functions of the ratio of the acidic and polymeric components, the degree of cross-linking in the polymeric matrix, and the moisture content. It is shown that at high relative humidity proton transport takes place by means of the network of hydrogen bonds, which are formed by the H+ counterions, sulfonate groups, and water molecules. At low moisture content, the hydroxyl groups in PVA play an active role in proton transport.

Key words

composite membrane phenolsulfonic acid polyvinyl alcohol solid-state NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volkov, V.I., Sidorenkova, E.A., Timashev, S.F., and Lakeev, S.G., Zh. Fiz. Khim., 1993, vol. 67, p. 914.Google Scholar
  2. 2.
    Volkov, V.I., Volkov, E.V., and Timashev, S.F., in Magnetic Resonance in Colloid and Interface Science, Fraissard, J., and Lapina, O., Eds., Dordrecht: Kluwer, 2002, p. 267.Google Scholar
  3. 3.
    Saldadze, G.K., Tagirova, R.I., and Volkov, V.I., Zh. Fiz. Khim., 1993, vol. 67, p. 1818.Google Scholar
  4. 4.
    Ye, G., Janzen, N., and Goward, G.R., Macromolecules, 2006, vol. 39, p. 3283.CrossRefGoogle Scholar
  5. 5.
    Timashev, S.F., Fiziko-khimiya membrannykh protsessov, Moscow: Khimiya, 1988 [Physical Chemistry of Membrane Processes (Engl. Transl.), Chichester: Ellis Horwood, 1991].Google Scholar
  6. 6.
    Bokshtein, B.S. and Yaroslavtsev, A.B., Diffuziya atomov i ionov v tverdykh telakh (Diffusion of Atoms and Ions in Solids), Moscow: MISIS (Moscow Institute of Steel and Alloys), 2005.Google Scholar
  7. 7.
    Voropaeva, E.Yu., Sanginov, E.A., Volkov, V.I., Pavlov, A.A., Shalimov, A.S., Stenina, I.A., and Yaroslavtsev, A.B., Zh. Neorg. Khim., 2008, vol. 53, p. 1643 [Russ. J. Inorg. Chem. (Engl. Transl.), 2008, vol. 53, pp. 1536–1541].Google Scholar
  8. 8.
    Dobrovol’skii, Yu.A., Jannasch, P., LaFitte, B., Belomoina, N.M., Rusanov, A.L., and Likhachev, D.Yu., Elektrokhimiya, 2007, vol. 43, p. 515 [Russ. J. Electrochem. (Engl. Transl.), 2007, vol. 43, pp. 489–501].Google Scholar
  9. 9.
    Volkov, V.I., Ponomarev, A.N., Yaroslavtsev, A.B., Sanginov, E.A., and Pavlov, A.A., Al’ternativnaya energetika i ekologiya, 2008, No. 2, p. 101.Google Scholar
  10. 10.
    Volkov, V.I., Dobrovolsky, Yu.A., Nurmiev, M.S., Sanginov, E.A., Volkov, E.V., and Pisareva, A.V., Solid State Ionics, 2008, vol. 179, p. 148.CrossRefGoogle Scholar
  11. 11.
    Volkov, V.I., Korotchkova, S.A., Ohya, H., and Guo, Q., J. Membr. Sci., 1995, vol. 100, p. 273.CrossRefGoogle Scholar
  12. 12.
    Horii, F., Masuda, K., and Kaji, H., Macromolecules, 1997, vol. 30, p. 2519.CrossRefGoogle Scholar
  13. 13.
    Patai, S., and Rappoport, Z., The Chemistry of Sulfonic Acids, Esters, and Their Derivatives, New York: Wiley, 1991.CrossRefGoogle Scholar
  14. 14.
    Horii, F., Hu, S., Deguchi, K., Sugisawa, H., Ohgi, H., and Sato, T., Macromolecules, 1996, vol. 29, p. 3330.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. I. Volkov
    • 1
  • A. I. Rebrov
    • 2
  • E. A. Sanginov
    • 1
  • E. M. Anokhin
    • 2
  • S. L. Shestakov
    • 2
  • A. A. Pavlov
    • 1
  • A. V. Maksimychev
    • 2
  • Yu. A. Dobrovol’skii
    • 1
  1. 1.Institute of Problems of Chemical PhysicsChernogolovkaRussia
  2. 2.Moscow Physico-Technical Institute (State University)DolgoprudnyiRussia

Personalised recommendations