Russian Journal of Electrochemistry

, Volume 44, Issue 6, pp 745–754

Influence of pulse plating conditions on the structure and properties of pure and composite nickel nanocrystalline coatings

Article

Abstract

An additive-free Watts type bath containing micron- and nano-SiC particles (1 μm and 20 nm respectively), as well as ultrafine-WC particles (200 nm), was used for the production of pure Ni and nickel matrix composite electrocoatings under both direct and pulse current conditions. Moreover, nickel nanocrystalline deposits were obtained from a Watts type bath containing small amounts of 2-butyne-1,4-diol, in order to investigate the combined advantages of additives and pulse technique on the properties of the deposits. The influence of the variable electrolysis parameters, the particle size and the organic additive concentration on the surface morphology, the structure and properties of the deposits were discussed. It has been proved that the application of pulse electrodeposition affects drastically the structural characteristics and properties of the deposits and under well-defined conditions could lead to the preparation of nanostructured materials with improved mechanical properties.

Key words

nickel electrodeposition pulse plating preferred orientation nanocrystalline hardness composite coatings organic additives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kollia, C., Spyrellis, N., Amblard, J., Froment, M., Froment M., and Maurin G., J. Appl. Electrochem., 1990, vol. 20, p. 1025.CrossRefGoogle Scholar
  2. 2.
    El-Sherik, A.M., Erb, U., and Page, J., Surf. Coat. Technol., 1996, vol.88, p. 70.CrossRefGoogle Scholar
  3. 3.
    Tóth-Kádár E., Bakonyi, I., Pogány, L., and Cziráki A., Surf. Coat. Technol., 1996, vol. 88, p. 57.CrossRefGoogle Scholar
  4. 4.
    Qu, N.S., Zhu, D., Chan, K.C., and Lei, W.N., Surf. Coat. Technol., 2003, vol. 168, p. 123.CrossRefGoogle Scholar
  5. 5.
    Zimmermann, A.F., Clark, D.G., Aust, K.T., and Erb, U., Mater. Letters, 2002, vol. 52, p. 85.CrossRefGoogle Scholar
  6. 6.
    Orlovskaja, L., Periene, N., Kurtinaitiene, M., and Surviliene, S., Surf. Coat. Technol., 1999, vol. 111, p. 234.CrossRefGoogle Scholar
  7. 7.
    Gyftou, P., Pavlatou, E.A., Spyrellis, N., and Hatzilyberis, K.S., Trans. Inst. Met. Finish., 2000, vol. 78, p. 223.Google Scholar
  8. 8.
    Gyftou, P., Stroumbouli, M., Pavlatou, E.A., and Spyrellis, N., Trans. Inst. Met. Finish., 2002, vol. 80, p. 88.Google Scholar
  9. 9.
    Costavaras, T.A., Froment, M., Hugot-Le Goff, A., and Georgoulis, C., J. Electrochem. Soc., 1973, vol. 120, p. 867.CrossRefGoogle Scholar
  10. 10.
    Spyrellis, N., Amblard, J. and Maurin, G., Oberfläsche-Surface, 1985, vol. 26, p. 458.Google Scholar
  11. 11.
    El-Sherik, A.M. and Erb, U., J. Mater. Sci., 1995, vol. 30, p. 5743.CrossRefGoogle Scholar
  12. 12.
    Kotzia, F., Kollia, C. and Spyrellis, N., Trans. Inst. Metal. Finish., 1993, vol. 71, p. 34.Google Scholar
  13. 13.
    Ye, X., Celis, J.P., De Bonte, M. and Roos, J.R., J. Electrochem. Soc., 1994, vol. 141, p. 2698.CrossRefGoogle Scholar
  14. 14.
    Amblard, J., Froment, M. and Spyrellis, N., Surf. Coat. Technol., 1977, vol. 5, p. 205.Google Scholar
  15. 15.
    Amblard, J., Epelboin, I., Froment, M. and Maurin, G., J. Appl. Electrochem., 1979, vol. 9, p. 233.CrossRefGoogle Scholar
  16. 16.
    Amblard, J., Doctoral Thesis, Paris, 1976.Google Scholar
  17. 17.
    Spyrellis, N., Doctoral Thesis, Paris, 1982.Google Scholar
  18. 18.
    Amblard, J., Froment, M., Maurin, G. and Spyrellis, N., J. Microsc. Spectrosc. Electron., 1981, vol. 6, p. 311.Google Scholar
  19. 19.
    Amblard, J., Froment, M., Maurin, G., Spyrellis, N., and Trevisan-Souteryrand, E., Electrochim. Acta, 1983, vol. 28, p. 909.CrossRefGoogle Scholar
  20. 20.
    Psarrou S., Kollia, C., and Spyrellis, N., Galvanotecnica Nuove Finiture, 1999, Bd 4, S. 224.Google Scholar
  21. 21.
    Denise, F. and Leidheiser, H., J. Electrochem. Soc., 1953, vol. 100, p. 490.CrossRefGoogle Scholar
  22. 22.
    Evans, D.J., Trans. Far. Soc., 1958, vol. 54, p. 1086.CrossRefGoogle Scholar
  23. 23.
    Knödler, A., Metalloberfläche, 1966, vol. 20, p. 52.Google Scholar
  24. 24.
    Lin, C.S. and Huang, K.C., J. Appl. Electrochem., 2004, vol. 34, p. 1013.CrossRefGoogle Scholar
  25. 25.
    Gyftou, P., Pavlatou, E.A., and Spyrellis, N., Galvanotecnica Nuove Finiture, 2001, vol. 11, p. 23.Google Scholar
  26. 26.
    Pavlatou, E.A., Stroumbouli, M., Gyftou, P., and Spyrellis, N., J. Appl. Electrochem., 2006, vol. 36, p. 385.CrossRefGoogle Scholar
  27. 27.
    Guilemany, M., Nutting, J., Miguel, J.R., and Dong, Z., Scripta Met. Mater., 1995, vol. 33, p. 55.CrossRefGoogle Scholar
  28. 28.
    Stewart, D.A., Shipway, P.H., and McCartney, D.G., Acta Mater., 2000, vol. 48, p. 1593.CrossRefGoogle Scholar
  29. 29.
    Wang, H., Xia, W., and Jin, Y., Wear, 1996, vol. 195, p. 47.CrossRefGoogle Scholar
  30. 30.
    Lou, D., Hellman, J., Luhulima, D., Liimatainen, J., and Lindroos, V.K., Mater. Sci. Eng., Ser. A, 2003, vol. 340, p. 155.CrossRefGoogle Scholar
  31. 31.
    Wanstrand, O., Larsson, M., and Kassman-Rudolphi, A., Tribology Int., 2000, vol. 33, p. 737.CrossRefGoogle Scholar
  32. 32.
    Guslienko, Yu.A., and Epik, A.P., Zashchitnye Pokrytiya na Metallakh, 1971, vol. 4, p. 238.Google Scholar
  33. 33.
    Pushpavanam, M., Natarajan, S.R., and Balakrishnan, K., Plat. Surf. Finish, 1997, vol. 84, p. 88.Google Scholar
  34. 34.
    Stroumbouli, M., Gyftou, P., Pavlatou, E.A., and Spyrellis, N., Surf. Coat. Technol., 2005, vol. 195, p. 325.CrossRefGoogle Scholar
  35. 35.
    Pavlatou, E.A., Raptakis, M., and Spyrellis, N., Surf. Coat. Technol., 2007, vol. 201, p. 4571.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Laboratory of General Chemistry, School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations