Advertisement

Russian Journal of Electrochemistry

, Volume 44, Issue 5, pp 530–542 | Cite as

Kinetics of electrochemical lithium intercalation into thin tungsten (VI) oxide layers

  • A. V. Churikov
  • A. V. Ivanishchev
  • I. A. Ivanishcheva
  • K. V. Zapsis
  • I. M. Gamayunova
  • V. O. Sycheva
Article

Abstract

The methods of galvanostatic intermittent titration, cyclic voltammetry, and electrode impedance spectroscopy are used to study the behavior of tungsten (VI) oxide film electrodes free of binding and conducting additives in the course of reversible lithium intercalation from nonaqueous electrolyte at 25°C. The studies are performed for electrodes with different degrees of crystallinity at the variation of the lithium concentration in intercalate from zero to 0.017 mol/cm3. Lithium diffusion coefficient is in the range of 10−11–10−16 cm2/s. The concentration dependences of the intercalation-layer transport parameters are analyzed, the equivalent circuit versions are discussed, and results obtained by different methods are compared.

Key words

intercalation lithium tungsten oxide chronopotentiometry voltammetry impedance spectroscopy diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Granqvist, C.G., Solar Energy Materials & Solar Cells, 2000, vol. 60, p. 201.CrossRefGoogle Scholar
  2. 2.
    Cantalini, C., Sun, H.T., Faccio, M., Pelino, M., Santucci, S., Lozzi, L., and Passacantando, M., Sen. Actuators, vol. 31, p. 81.Google Scholar
  3. 3.
    Nanba, T., Takahashi, T., Takada, J., Osaka, A., Miura, Y., Yasui, I., Kishimoto, A., and Kudo, T., J. Non-Cryst. Solids, 1994, vol. 178, p. 233.CrossRefGoogle Scholar
  4. 4.
    Meulenkamp, E.A., J. Electrochem. Soc., 1997, vol. 144, p. 1664.CrossRefGoogle Scholar
  5. 5.
    Aleshina, L.A., Glazkova, S.V., Lugovskaya, L.A., Malinenko, V.P., and Fofanov, A.D., Elektrokhimiya, 1998, vol. 34, p. 988.Google Scholar
  6. 6.
    Modestov, A.D., Cheshko, A.D., and Davydov, A.D., Elektrokhimiya, 1998, vol. 34, p. 1468.Google Scholar
  7. 7.
    Biaggio, S.R., Rocha-Filho, R.C., Vilche, J.R., Varela, F.E., and Gassa, L.M., Electrochim. Acta, 1997, vol. 42, p. 1751.CrossRefGoogle Scholar
  8. 8.
    Goossens, A. and Macdonald, D.D., J. Electroanal. Chem., 1993, vol. 352, p. 65.CrossRefGoogle Scholar
  9. 9.
    Kim, D.-J., Pyun, S.-I., and Oriani, R.A., Electrochim. Acta, 1995, vol. 40, p. 1171.CrossRefGoogle Scholar
  10. 10.
    Davazoglou, D. and Donnadieu, A., J. Non-Cryst. Solids, 1994, vol. 169, p. 64.CrossRefGoogle Scholar
  11. 11.
    Davazoglou, D., Moutsakis, A., Valamontes, V., Psykaris, V., and Tsamakis, D., J. Electrochem. Soc., 1997, vol. 144, p. 595.CrossRefGoogle Scholar
  12. 12.
    Arakaki, J., Reyes, R., Horn, M., and Estrada, W., Solar Energy Mater. & Solar Cells, 1995, vol. 37, p. 33.CrossRefGoogle Scholar
  13. 13.
    Kumagai, N., Kumagai, N., Umetzu, Y., Tanno, K., and Pereira-Ramos, J.P., Solid State Ionics, 1996, vol. 86–88, p. 1443.CrossRefGoogle Scholar
  14. 14.
    Hibino, M., Han, W., and Kudo, T., Solid State Ionics, 2000, vol. 135, p. 61.CrossRefGoogle Scholar
  15. 15.
    Yu, A., Kumagai, N., and Yashiro, A., Solid State Ionics, 1997, vol. 100, p. 267.CrossRefGoogle Scholar
  16. 16.
    Zheng, T., McKinnon, W.R., and Dahn, J.R., J. Electrochem. Soc., 1996, vol. 143, p. 2137.CrossRefGoogle Scholar
  17. 17.
    Kim, J.J., Tryk, D.A., Amemiya, T., Hashimoto, K., and Fujishima, A., J. Electroanal. Chem., 1997, vol. 435, p. 31.CrossRefGoogle Scholar
  18. 18.
    Gavanier, B., Butt, N.S., Hutchins, M., Mercier, V., Topping, A.J., and Owen, J.R., Electrochim. Acta, 1999, vol. 44, p. 3251.CrossRefGoogle Scholar
  19. 19.
    Han, W., Hibino, M., and Kudo, T., Solid State Ionics, 2000, vol. 128, p. 25.CrossRefGoogle Scholar
  20. 20.
    Yu, A., Kumagai, N., Liu, Z., and Lee, J.Y., J. Solid State Electrochem., 1998, vol. 2, p. 394.CrossRefGoogle Scholar
  21. 21.
    Komaba, S., Kumagai, N., Kato, K., and Yashiro, H., Solid State Ionics, 2000, vol. 135, p. 193.CrossRefGoogle Scholar
  22. 22.
    Mattsson, S.M., Solid State Ionics, 2000, vol. 131, p. 261.CrossRefGoogle Scholar
  23. 23.
    Avellaneda, C.O. and Bulhoes, L.O.S., Solid State Ionics, 2003, vol. 165, p. 59.CrossRefGoogle Scholar
  24. 24.
    Pyun, S.-I. and Bae, J.-S., J. Alloys Compd., 1996, vol. 245, p. L1.CrossRefGoogle Scholar
  25. 25.
    Li, Y.M., Hibino, M., Miyayania, M., and Kudo, T., Solid State Ionics, 2000, vol. 134, p. 271.CrossRefGoogle Scholar
  26. 26.
    Lee, S.-H., Cheong, H.M., Tracy, C.E., Mascarenhas, A., Pitts, R., Jorgensen, G., and Deb, S.K., Electrochim. Acta, 2001, vol. 46, p. 3415.CrossRefGoogle Scholar
  27. 27.
    Pyun, S.-I. and Bae, J.-S., Electrochim. Acta, 1996, vol. 41, p. 919.CrossRefGoogle Scholar
  28. 28.
    Choi, Y.-M., Pyun, S.-I., Bae, J.-S., and Moon, S.-I., J. Power Sources, 1995, vol. 56, p. 25.CrossRefGoogle Scholar
  29. 29.
    Choi, Y.-M., Pyun, S.-I., and Moon, S.-I., Solid State Ionics, 1996, vol. 89, p. 43.CrossRefGoogle Scholar
  30. 30.
    Bohnke, O., Vuillemin, B., Gabrielli, C., Keddam, M., and Perrot, H., Electrochim. Acta, 1995, vol. 40, p. 2765.CrossRefGoogle Scholar
  31. 31.
    Molenda, J. and Kubik, A., Solid State Ionics, 1999, vol. 117, p. 57.CrossRefGoogle Scholar
  32. 32.
    Kim, D.-J. and Pyun, S.-I., Electrochim. Acta, 1998, vol. 43, p. 2341.CrossRefGoogle Scholar
  33. 33.
    Macdonald, D.D., Sikora, E., and Sikora, J., Electrochim. Acta, 1998, vol. 43, p. 2851.CrossRefGoogle Scholar
  34. 34.
    Baruffaldi, C., Cattarin, S., and Musiani, M., Electrochim. Acta, 2003, vol. 48, p. 3921.CrossRefGoogle Scholar
  35. 35.
    Sikora, J., Sikora, E., and Macdonald, D.D., Electrochim. Acta, 2000, vol. 45, p. 1875.CrossRefGoogle Scholar
  36. 36.
    Timofeeva, E.V., Tsirlina, G.A., and Petrii, O.A., Elektrokhimiya, 2003, vol. 39, p. 795.Google Scholar
  37. 37.
    Galus, Z., Teoretyczne podstawy electroanalizy chemicznej, Warszawa: Panstwowe Wydawnictwo Naukowe, 1971.Google Scholar
  38. 38.
    Churikov, A.V., Elektrokhimiya, 2002, vol. 38, p. 120.Google Scholar
  39. 39.
    Pridatko, K.I., Churikov, A.V., and Volgin, M.A., Elektrokhim. Energetika, 2003, vol. 3, p. 185.Google Scholar
  40. 40.
    Churikov, A.V., Elektrokhim. Energetika, 2003, vol. 3, p. 124.Google Scholar
  41. 41.
    Churikov, A.V. and Ivanischev, A.V., Electrochim. Acta, 2003, vol. 48, p. 3677.CrossRefGoogle Scholar
  42. 42.
    Churikov, A.V., Volgin, M.A., Pridatko, K.I., Ivanishchev, A.V., Gridina, N.A., and L’vov, A.L., Elektrokhimiya, 2003, vol. 39, p. 591.Google Scholar
  43. 43.
    Ivanishchev, A.V. and Churikov, A.V., Elektrokhim. Energetika, 2003, vol. 3, p. 174.Google Scholar
  44. 44.
    Yang, Y., Shu, D., Yu, H., Xia, X., and Lin, Z.G., J. Power Sources, 1997, vol. 65, p. 227.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. V. Churikov
    • 1
  • A. V. Ivanishchev
    • 1
  • I. A. Ivanishcheva
    • 1
  • K. V. Zapsis
    • 1
  • I. M. Gamayunova
    • 1
  • V. O. Sycheva
    • 1
  1. 1.Chernyshevsky Saratov State UniversitySaratovRussia

Personalised recommendations