Russian Journal of Electrochemistry

, Volume 42, Issue 11, pp 1177–1192 | Cite as

Electrocatalytic properties of Au(111)-Pd quasi-single-crystal film electrodes as probed by ATR-SEIRAS



Electrochemical and electrocatalytic properties of thin films Au(111-25 nm), which are quasi-single-crystal electrodes 25 nm thick made of gold with the (111) preferential orientation, and same electrodes modified with a monolayer (ML) of palladium are studied in 0.1 M solutions of HClO4 and H2SO4 employing voltammetric techniques and surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS). Spectroscopic experiments demonstrate strong adsorption of electrolyte species (H2O, OHads, anions) on the Pd surface. The weak and reversible adsorption of CO on Au(111-25 nm) does not change the interfacial-water structure. Adsorption of CO on the Pd-modified film results in an irreversibly adsorbed CO adlayer stabilized by co-adsorbed isolated water species. Various electrooxidation mechanisms are discussed. Electrochemical and spectroscopic investigations on the adsorption and electrooxidation of HCOOH on bare and 1 ML Pd-Au(111-25 nm) electrodes reveal that electrooxidation proceeds in both cases via a direct or dehydrogenation pathway. This mechanism involves the formation of formate as intermediate, which is detected by in situ ATR-SEIRAS. The reactivity on Pd-modified surfaces is higher than on bare gold. The specifically adsorbed anions (sulfate/bisulfate) and the oxide formation on the substrate surface lower the reactivity for CO and HCOOH on both surfaces.

Key words

SEIRAS quasi-single-crystal Au(111-25 nm) films palladium interfacial water carbon monoxide formic acid adsorption electrooxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Interfacial Electrochemistry: Theory, Experiment, and Applications, Wieckowski, A., Ed., New York: Marcel Dekker, 1999.Google Scholar
  2. 2.
    Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley-VCH, 1998.Google Scholar
  3. 3.
    Markovic, N.M. and Ross, P.N., Surf. Sci. Rep., 1998, vol. 45, p. 117.CrossRefGoogle Scholar
  4. 4.
    Greeney, J., Norskov, J.K., and Mavrikakis, M., Ann. Rev. Phys. Chem., 2002, vol. 53, p. 319.CrossRefGoogle Scholar
  5. 5.
    Koper, M.T.M., J. Electroanal. Chem., 2005, vol. 574, p. 375.CrossRefGoogle Scholar
  6. 6.
    Proc. Workshop on the Theory-Experiment Interface in Fuel Cell Electrochemistry, Wieckowski, A. (org.), Quebec, 2005.Google Scholar
  7. 7.
    Parsons, R. and Vandernoot, T., J. Electroanal. Chem., 1988, vol. 257, p. 9.CrossRefGoogle Scholar
  8. 8.
    Beden, B. Leger, J.M., and Lamy, C., Modern Aspects of Electrochemistry, Bockris, J.O’M., Conway, B.E., and White, R.E., Eds., New York: Plenum, 1992, p. 97.Google Scholar
  9. 9.
    Osawa, M., Bull. Chem. Soc. Jpn., 1997, vol. 70, p. 2861.CrossRefGoogle Scholar
  10. 10.
    Wandlowski, T., Ataka, K., Pronkin, S., and Diesing, D., Electrochim. Acta, 2004, vol. 49, p. 1233.CrossRefGoogle Scholar
  11. 11.
    Ataka, K., Yotsuyanagi, T., and Osawa, M., J. Phys. Chem., 1996, vol. 100, p. 10664.CrossRefGoogle Scholar
  12. 12.
    Pronkin, S. and Wandlowski, T., J. Electroanal. Chem., 2003, vol. 550–551, p. 131.CrossRefGoogle Scholar
  13. 13.
    Han, B., Li, Z., Pronkin, S., and Wandlowski, T., Can. J. Chem., 2004, vol. 82, p. 1481.CrossRefGoogle Scholar
  14. 14.
    Bjerke, A.E., Griffiths, P.R., and Theiss, W., Anal. Chem., 1999, vol. 71, p. 1967.CrossRefGoogle Scholar
  15. 15.
    Zhu, Y. and Uchida, H., Langmuir, 1999, vol. 15, p. 8757.CrossRefGoogle Scholar
  16. 16.
    Miki, A., Ye, S., and Osawa, M., Chem. Commun., 2002, p. 1500.Google Scholar
  17. 17.
    Watanabe, M., Zhu, Y., and Uchida, H., J. Phys. Chem. B, 2000, vol. 104, p. 1762.CrossRefGoogle Scholar
  18. 18.
    Miki, A., Ye, S., Senzaki, T., and Osawa, M., J. Electroanal. Chem., 2004, vol. 563, p. 23.CrossRefGoogle Scholar
  19. 19.
    Chen, Y.X., Miki, A., Ye, S., Sakai, H., and Osawa, M., J. Am. Chem. Soc., 2003, vol. 125, p. 3680.PubMedCrossRefGoogle Scholar
  20. 20.
    Shao, M.H. and Adzic, R.R., Electrochim. Acta, 2005, vol. 50, p. 459.CrossRefGoogle Scholar
  21. 21.
    Pronkin, S. and Wandlowski, T., Surf. Sci., 2004, vol. 573, p. 109.CrossRefADSGoogle Scholar
  22. 22.
    Coq, M. and Figueras, F., J. Mol. Catal. A: Chem., 2001, vol. 173, p. 117.CrossRefGoogle Scholar
  23. 23.
    Henry, C.R., Surf. Sci. Rep., 1998, vol. 31, p. 231.CrossRefGoogle Scholar
  24. 24.
    Bartarione, S., Scarano, D., Zechina, A., Johanek, V., Hoffmann, J., Schauermann, S., Libuda, J., Rupprechter, G., and Fruend H.J., J. Catal., 2004, vol. 223, p. 64.CrossRefGoogle Scholar
  25. 25.
    Maksimov, Yu.M. and Petrii, O.A., Elektrokhimiya, 1974, vol. 10, p. 1721.Google Scholar
  26. 26.
    Maksimov, Yu.M., Bruners, R.U., and Podlovchenko, B.I., Elektrokhimiya, 1985, vol. 22, p. 1000.Google Scholar
  27. 27.
    Zhirnova, M.I. and Petrii, O.A., Elektrokhimiya, 1972, vol. 8, p. 707.Google Scholar
  28. 28.
    Schmidt, T.J., Stamenkovic, V., Markovic, N.M., and Ross, P.N., Electrochim. Acta, 2003, vol. 48, p. 3823.CrossRefGoogle Scholar
  29. 29.
    Naohara, H., Ye, S., and Uosaki, K., Electrochim. Acta, 2000, vol. 45, p. 3305.CrossRefGoogle Scholar
  30. 30.
    Quayum, M.E., Ye, S., and Uosaki, K., J. Electroanal. Chem., 2002, vol. 520, p. 126.CrossRefGoogle Scholar
  31. 31.
    Kibler, L.A., Kleinert, M., Randler, R., and Kolb, D.M., Surf. Sci., 1999, vol. 443, p. 19.CrossRefGoogle Scholar
  32. 32.
    Baldauf, M. and Kolb, D.M., Electrochim. Acta, 1993, vol. 38, p. 2145.CrossRefGoogle Scholar
  33. 33.
    Baldauf, M. and Kolb, D.M., J. Phys. Chem., 1996, vol. 100, p. 11 375.CrossRefGoogle Scholar
  34. 34.
    Naohara, H., Ye, S., and Uosaki, K., J. Electroanal. Chem., 2001, vol. 500, p. 435.CrossRefGoogle Scholar
  35. 35.
    El-Aziz, A.M. and Kibler, L.A., J. Electroanal. Chem., vol. 534, p. 107.Google Scholar
  36. 36.
    Takahashi, M., Hayashi, Y., Mizuki, J., Tamura, K., Kondo, T., Naohara, H., and Uosaki, K., Surf. Sci., 2000, vol. 461, p. 213.CrossRefGoogle Scholar
  37. 37.
    Naohara, H., Ye, S., and Uosaki, K., Colloids Surf., A, 1999, vol. 154, p. 201.CrossRefGoogle Scholar
  38. 38.
    Ruban, A., Hammer, B., Stolze, P., Skiver, H.L., and Norskov, J.K., J. Mol. Catal. A: Chem., 1997, vol. 115, p. 421.CrossRefGoogle Scholar
  39. 39.
    Kibler, L.A., El-Aziz, A.M., and Kolb, D.M., J. Mol. Catal. A: Chem., 2003, vol. 199, p. 57.CrossRefGoogle Scholar
  40. 40.
    Kibler, L.A., El-Aziz, A.M., Hoyer, R., and Kolb, D.M., Angew. Chem. (Int. Ed.), 2005, vol. 44, p. 2080.CrossRefGoogle Scholar
  41. 41.
    Hoshi, N., Kagaya, K., and Hori, Y., J. Electroanal. Chem., 2000, vol. 485, p. 55.CrossRefGoogle Scholar
  42. 42.
    Hoshi, N., Kuroda, M., and Hori, Y., J. Electroanal. Chem., 2002, vol. 521, p. 155.CrossRefGoogle Scholar
  43. 43.
    Wan, L.-J., Suzuki, T., Sashikata, K., Okada, J., Inukai, J., and Itaya, K., J. Electroanal. Chem., 2000, vol. 484, p. 189.CrossRefGoogle Scholar
  44. 44.
    Alvarez, B., Climent, V., Feliu, J.M., and Aldaz, A., Electrochem. Commun., 2000, vol. 2, p. 427.CrossRefGoogle Scholar
  45. 45.
    Arenz, M., Stamenkovic, V., Ross, P.N., and Markovic, N.M., Electrochem. Commun., 2003, vol. 5, p. 809.CrossRefGoogle Scholar
  46. 46.
    Arenz, M., Stamenkovic, V., Schmidt, T.J., Wandelt, K., Ross, P.N., and Markovic, N.M., Surf. Sci., 2002, vol. 506, p. 287.CrossRefGoogle Scholar
  47. 47.
    Iwasita, T. and Nart, F.C., Advances in Electrochemical Science and Engeneering, Gerisher, H. and Tobias, C.W., Eds., Weinheim: VCH, 1995, vol. 4, p. 123.Google Scholar
  48. 48.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.Google Scholar
  49. 49.
    Taddayoni, M.A. and Weaver, M.J., Langmuir, 1986, vol. 2, p. 179.CrossRefGoogle Scholar
  50. 50.
    Chang, S.-C., Hamelin, A., and Weaver, M.J., J. Phys. Chem., 1991, vol. 95, p. 5560.CrossRefGoogle Scholar
  51. 51.
    Sun, S.G., Cai, W.B., Wan, L.-J., and Osawa, M., J. Phys. Chem., 1999, vol. 103, p. 2460.Google Scholar
  52. 52.
    Beltramo, G.L., Shubina, T.E., and Koper, M.T., Chem. Phys. Chem., 2005, p. 2597.Google Scholar
  53. 53.
    Zhang, Y. and Weaver, M.J., J. Electroanal. Chem., 1993, vol. 354, p. 1397.CrossRefGoogle Scholar
  54. 54.
    Blizanac, B.B., Lucas, C.A., Gallagher, M.E., Arenz, M., Ross, P.N., and Markovic, N.M., J. Phys. Chem. B, 2004, vol. 108, p. 625.CrossRefGoogle Scholar
  55. 55.
    Blizanac, B.B., Arenz, M., Ross, P.N., and Markovic, N.M., J. Am. Chem. Soc., 2004, vol. 126, p. 10 130.CrossRefGoogle Scholar
  56. 56.
    Edens, G.J., Hamelin, A., and Weaver, M.J., J. Phys. Chem., 1996, vol. 100, p. 2322.CrossRefGoogle Scholar
  57. 57.
    Shue, C.-H., Yang, L.-Y.O., Yau, S.-L., and Itaya, K., Langmuir, 2005, vol. 21, p. 1942.PubMedCrossRefGoogle Scholar
  58. 58.
    Hoshi, N., Koga, O., Hori, Y., and Ogawa, T., J. Electroanal. Chem., 2006, vol. 587, p. 79.CrossRefGoogle Scholar
  59. 59.
    Alvarez, B., Rodes, A., Perez, J.M., and Feliu, J.M., J. Phys. Chem. B, 2003, vol. 107, p. 2018.CrossRefGoogle Scholar
  60. 60.
    Walter, K., Seifferth, O., Kuhlenbeck, H., Brumer, M., and Fruend, H.J., Surf. Sci., 1998, vol. 399, p. 190.CrossRefGoogle Scholar
  61. 61.
    Giorgi, J.B., Schroeder, T., Baumer, M., and Fruend, H.J., Surf. Sci., 2001, vol. 498, p. L71.CrossRefGoogle Scholar
  62. 62.
    Gilman, S., J. Phys. Chem., 1964, vol. 68, p. 70.CrossRefGoogle Scholar
  63. 63.
    Hammer, B., Morikawa, Y., and Norskov, J.K., Phys. Rev. Lett., 1996, vol. 76, p. 2141.PubMedCrossRefADSGoogle Scholar
  64. 64.
    Shubina, T.E. and Koper, M.T.M., Electrochim. Acta, 2002, vol. 47, p. 3621.CrossRefGoogle Scholar
  65. 65.
    Shubina, T.E., Hartnig, C., and Koper, M.T.M., Phys. Chem. Chem. Phys., 2004, vol. 6, p. 4215.CrossRefGoogle Scholar
  66. 66.
    Roudgar, A. and Gross, A., J. Electroanal. Chem., 2003, vol. 548, p. 121.CrossRefGoogle Scholar
  67. 67.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed.Google Scholar
  68. 68.
    Columbia, M.R. and Thiel, P.A., J. Electroanal. Chem., 1994, vol. 369, p. 1.CrossRefGoogle Scholar
  69. 69.
    Zhang, Y. and Weaver, M.J., Langmuir, 1993, vol. 9, p. 1397.CrossRefGoogle Scholar
  70. 70.
    Floate, S., Hosseini, M., Arshadi, M.R., Ritson, D., Young, K.L., and Nichols, R.J., J. Electroanal. Chem., 2003, vol. 542, p. 67.CrossRefGoogle Scholar
  71. 71.
    Davis, J.L. and Barteau, M.A., Surf. Sci., 1991, vol. 256, p. 50.CrossRefGoogle Scholar
  72. 72.
    Capon, A. and Parsons, R., J. Electroanal. Chem., 1973, vol. 44, p. 239.CrossRefGoogle Scholar
  73. 73.
    Smolin, A.V., Podlovchenko, B.I., and Maksimov, Yu.M., Elektrokhimiya, 1997, vol. 33, p. 477.Google Scholar
  74. 74.
    Arenz, M., Stamenkovic, V., Schmidt, T.J., Wandelt, K., Ross, P.N., and Markovic, N.M., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 4242.CrossRefGoogle Scholar
  75. 75.
    Kuliev, S., Zul’fugarov, Z.G., Bagotzky, V.S., and Vassiliev, Yu.B., Elektrokhimiya, 1985, vol. 21, p. 64.Google Scholar
  76. 76.
    Arenz, M., Stamenkovic, V., Ross, P.N., and Markovic, N.M., Surf. Sci., 2004, vol. 573, p. 57.CrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute for Thin Films and Interfaces ISG 3Research Centre JuelichJuelichGermany

Personalised recommendations