Advertisement

Russian Journal of Electrochemistry

, Volume 42, Issue 10, pp 1134–1140 | Cite as

Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts

  • A. Marshall
  • B. Børresen
  • G. Hagen
  • S. Sunde
  • M. Tsypkin
  • R. TunoldEmail author
Article

Abstract

Iridium-based oxides are highly active as oxygen evolving electrocatalysts in PEM water electrolyzers. In this work XRD reveals that Ir-Sn oxides contain a single rutile phase with lattice parameters between those of pure IrO2 and SnO2. Addition of Ru leads to the synthesis of a core-shell type material due to the strong agglomeration of Ru colloids during the preparation procedure. The shell of this material consists of an Ir-Sn-Ru oxide deficient in Ru relative to the bulk. This leads to a decrease in the surface noble metal concentration (as found by XPS), which in turn results in a significant reduction in electrochemically active surface area. Polarization analysis indicates that the addition of Ru can influence the rate-determining step or mechanism by which oxygen is evolved. In a PEM water electrolysis cell, small additions of Sn do not significantly reduce the operating performance, however larger additions cause a performance loss due to a reduction in active surface area and increased ohmic resistance. When a pure IrO2 anode is used, a cell voltage is 1.61 V at 1 A cm−2 and 90°C.

Key words

iridium and tin oxides hydrogen evolution electrocatalysts nanocrystalline particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oberlin, R. and Fischer, M., Proc. 6th World Hydrogen Energy Conf., 1986, p. 333.Google Scholar
  2. 2.
    Marshall, A., Börresen, B., Hagen, G., Tsypkin, M., and Tunold, R., J. New. Mater. Electrochem. Syst., 2004, p. 197.Google Scholar
  3. 3.
    Marshall, A., Börresen, B., Hagen, G., Tsypkin, M., and Tunold, R., Mater. Chem., 2005, vol. 94, p. 226.CrossRefGoogle Scholar
  4. 4.
    Marshall, A., Börresen, B., Hagen, G., Tsypkin, M., and Tunold, R., Electrochim. Acta (in press).Google Scholar
  5. 5.
    Beer, H., UK Patent, no. 1 147 442.Google Scholar
  6. 6.
    Trasatti, S., Electrochim. Acta, 1984, vol. 29, p. 1503.CrossRefGoogle Scholar
  7. 7.
    Kotz, R. and Stucki, S., Electrochim. Acta, 1986, vol. 31, p. 1311.CrossRefGoogle Scholar
  8. 8.
    Hutchings, R., Muller, K., and Stucki, S., J. Mater. Sci., 1984, vol. 19, p. 3987.CrossRefGoogle Scholar
  9. 9.
    Trasatti, S., Electrochim. Acta, 1991, vol. 36, p. 225.CrossRefGoogle Scholar
  10. 10.
    Boodts, J. and Trasatti, S., Electrochim. Acta, 1990, vol. 137, p. 3784.Google Scholar
  11. 11.
    Gottesfeld, S. and Zawodzinski, T.A., in Advances in Electrochemical Science and Engineering, Alkire, R.C., Gerischer, H., Kolb, D.M., and Tobias, C.N.V., Eds., Weinheim: Wiley, 1997, vol. 5, p. 235.Google Scholar
  12. 12.
    Wilson, M. and Gottesfeld, S., J. Appl. Electrochem., 1992, vol. 22, p. 1.CrossRefGoogle Scholar
  13. 13.
    Moulder, J., Stickle, W., Sobol, P., and Bomben, K., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, 1992.Google Scholar
  14. 14.
    Rasten, E., Hagen, G., and Tunold, R., Electrochim. Acta, 2003, vol. 48, p. 3945.CrossRefGoogle Scholar
  15. 15.
    Bonet, F., Delmas, V., Grugeon, S., Herrera-Urbina, R., Silvert, P., and Tekaia-Elhsissen, K., Nanostruct. Mater., 1999, vol. 11, p. 1277.CrossRefGoogle Scholar
  16. 16.
    Rasten, E., Electrocatalysis in Water Electrolysis with Solid polymer Electrolyte, Ph.D. Thesis, Trondheim (Norway): NTNU, 2001.Google Scholar
  17. 17.
    Angelinetta, C., Atanasoska, L., Atanasoski, R., and Trasatti, S., J. Electroanal. Chem., 1986, vol. 214, p. 535.CrossRefGoogle Scholar
  18. 18.
    Walker, R., Bailes, M., and Peter, L., Electrochim. Acta, 1998, vol. 44, p. 1289.CrossRefGoogle Scholar
  19. 19.
    Tsirlina, G., Roginskaya, Y., and Postovalova, G., Russ. J. Electrochem, 1998, vol. 34, p. 504.Google Scholar
  20. 20.
    Tsirlina, G., Roginskaya, Y., Postovalova, G., and Vasil’ev, S., Russ. J. Electrochem., 1999, vol. 35, p. 1218.Google Scholar
  21. 21.
    Lodi, G., Zucchini, G., Battisti, A.D., Giatti, A., Battaglin, G., and Mea, G.D., Surf. Sci., 1991, vol. 252, p. 836.CrossRefGoogle Scholar
  22. 22.
    Ardizzone, S., Fregonara, G., and Trasatti, S., Electrochim. Acta, 1990, vol. 35, p. 263.CrossRefGoogle Scholar
  23. 23.
    Mattos-Costa, F., de Lima-Neto, P., Machado, S., and Avaca, L., Electrochim. Acta, 1998, vol. 44, p. 1515.CrossRefGoogle Scholar
  24. 24.
    De Pauli, C. and Trasatti, S., J. Electroanal. Chem., 2002, vol. 145, p. 538.Google Scholar
  25. 25.
    Balko, E. and Nguyen, P., J. Appl. Electrochem., 1991, vol. 21, p. 678.CrossRefGoogle Scholar
  26. 26.
    Matsumoto, Y. and Sato, E., Mater. Chem. Phys., 1986, vol. 14, p. 397.CrossRefGoogle Scholar
  27. 27.
    De Oliveira-Sousa, A., de Siliva, M., Machado, S., Avaca, L., and de Lima-Neto, P., Electrochim. Acta, 2000, vol. 45, p. 4467.CrossRefGoogle Scholar
  28. 28.
    Endo, K., Katayama, Y., Miura, T., and Kishi, T., J. Appl. Electrochem., 2002, vol. 32, p. 173.CrossRefGoogle Scholar
  29. 29.
    Bockris, J., J. Chem. Phys., 1956, vol. 24, p. 817.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • A. Marshall
    • 1
  • B. Børresen
    • 1
  • G. Hagen
    • 1
  • S. Sunde
    • 1
  • M. Tsypkin
    • 1
  • R. Tunold
    • 1
    Email author
  1. 1.Norwegian University of Science and TechnologyRussia

Personalised recommendations