Russian Journal of Electrochemistry

, Volume 42, Issue 5, pp 424–466 | Cite as

Flicker noise spectroscopy and its application: Information hidden in chaotic signals (review)

  • S. F. Timashev
Article

Abstract

Fundamentals of flicker noise spectroscopy (FNS), a general phenomenological approach to analyzing dynamics and structure of complex nonlinear systems by extracting information contained in chaotic signals of diverse nature generated by such systems, are presented. The primary idea of FNS is to disclose information hidden in correlation links which are present in a sequence of various irregularities (spikes, jumps, discontinuities in derivatives of different orders) that occur in the measured dynamic variables at all levels of spatiotemporal hierarchy of systems under study. The information is derived from power spectra S(f) (f, frequency) and transient difference moments Φ(p)(τ)(τ, time delay parameter) of different orders p. The procedures of averaging over time interval T, which are introduced in FNS when computing S(f) and Φ(p)(τ), differ from the procedures of averaging in the Gibbs approach. In the latter case, due to the adoption of the ergodic hypothesis, the average values of dynamic quantities over time are replaced by the average values of the same quantities over a statistical ensemble. It came to pass that the Φ(p)(τ) functions are formed exclusively by jumps of a dynamic variable on different spatiotemporal levels of the system’s hierarchy, whereas the formation of S(f) is contributed to by spikes and jumps. The informative parameters extracted from S(f) and Φ(p)(τ) describe correlation times and characterize loss of “memory” (correlation links) in these correlation time intervals for the “spike” and “jump” irregularities. These parameters can be determined using the expressions derived for the case of steady-state evolution. Here the “steady state” implies an evolution state that is characterized by the same values of informative parameters on every level of the system’s hierarchy. In contrast to the scaling self-similarity in theory of fractals and renormgroup, FNS introduces a multiparametric self-similarity for the S(f) and Φ(p)(τ) functions, which is generally characterized by a set of parameters rather than one scaling factor. The S(f) and Φ(2)(τ) functions which are related to different types of information may be viewed, in the steady-state case, as fluctuation-dissipation relations that complement each other informatively. Examples of such generalized relations are presented for fluctuations of electric voltage under open-circuit conditions (the Nyquist theorem), the Levy diffusion, the hydrodynamic fluctuations at fully developed turbulence, and the flicker noise fluctuations of the electric current density in electron-conducting systems. To analyze the dynamics of non-steady processes, formulas are presented for calculating nonstationarity indicators (factors) and estimating time instants when most noticeable changes occur in systems under study, including those preceding catastrophic evolution changes. The studies carried out to date show that the FNS method can be used in solving problems of three types. The first is the determination of parameters or patterns that characterize the dynamics or specific features of structural organization of open complex systems. The second involves search for precursors of sharpest changes in the states of various open dissipative systems on the basis of available information conceming the dynamics of such systems. And the third problem concerns the dynamics of redistribution of perturbations in distributed systems. It is solved by analyzing dynamic correlations in chaotic signals that are measured simultaneously at different points in space. The review demonstrates some applications of the FNS methodology. In particular, it considers some physicochemical and natural processes the data for which were obtained from electrochemical and biological measurements.

Key words

fluctuation dynamics flicker noise power spectrum transient difference moments informative parameters fluctuation-dissipation relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schuster, H., Deterministic Chaos: An Introduction, Weinheim: Physik, 1984.Google Scholar
  2. 2.
    Berger, P., Pomeau, Y., and Vidal, C., L’ordre dans le Chaos: Vers une Approche Deterministe de la Turbulence, Paris: Hermann, 1984.Google Scholar
  3. 3.
    Hegger, R., Kantz, H., and Schreiber, T., Chaos, 1999, vol. 9, p. 413.CrossRefGoogle Scholar
  4. 4.
    Bak, P., How Nature Works: The Science of Self-Organized Criticality, Oxford: Oxford University Press, 1997.Google Scholar
  5. 5.
    Wolfram, S., A New Kind of Science, Wolfram Media, 2002.Google Scholar
  6. 6.
    Fractals in Physics, Pietronero, L. and Tosatti, E., Eds., Amsterdam: North Holland, 1986.Google Scholar
  7. 7.
    Prigogine, I. and Stengers, I., Order out of Chaos: Man’s New Dialog with Nature, New York: Bantam Books, 1984.Google Scholar
  8. 8.
    Nicolis, G., Dynamics of Hierarchial Systems: An Evolutionary Approach, Berlin: Springer, 1986.Google Scholar
  9. 9.
    Timashev, S.F., Stochastic and Chaotic Dynamics in the Lakes: Stochaos, Aug 16–20, 1999, vol. 502 of AIP Conference Proceedings, Broomhead, D.S., Luchinskaya, E.A., McClintock, P.V.E., and Mullin, T., Eds., New York, AIP, 2000, p. 238.Google Scholar
  10. 10.
    Timashev, S.F., Stochastic and Chaotic Dynamics in the Lakes: Stochaos, Aug 16–20, 1999, vol. 502 of AIP Conference Proceedings, Broomhead D.S., Luchinskaya, E.A., McClintock, P.V.E., and Mullin, T., Eds., New York, AIP, 2000, p. 562.Google Scholar
  11. 11.
    Timashev, S.F., Teor. Osn. Khim. Tekhnol., 2000, vol. 34, p. 339.Google Scholar
  12. 12.
    Timashev, S.F., Int. Conf. on Noise and Fluctuations ICNF-2001, Bosman, G.N., Ed., London: World Scientific, 2001, p. 775.Google Scholar
  13. 13.
    Timashev, S.F., Zh. Fiz. Khim., 2001, vol. 75, p. 1900.Google Scholar
  14. 14.
    Timashev, S.F., Quantum Limit to the Second Law, Sheehan, D.P., Ed., New York: AIP, 2002, p. 367.Google Scholar
  15. 15.
    Timashev, S.F. and Vstovskii, G.V., Elektrokhimiya, 2003, vol. 39, p. 149.Google Scholar
  16. 16.
    Parkhutik, V.P. and Timashev, S.F., Elektrokhimiya, 2000, vol. 36, p. 1378.Google Scholar
  17. 17.
    Timashev, S.F., Vstovsky, G.V., and Belyaev, V.E., Int. Conf. on Noise and Fluctuations ICNF-2003, Aug 18–22, 2003, Sikula, J., Ed., Prague, 2003, p. 77.Google Scholar
  18. 18.
    Timashev, S.F., Grigor’ev, V.V., and Budnikov, E.Yu., Zh. Fiz. Khim., 2002, vol. 76, p. 554.Google Scholar
  19. 19.
    Timashev, S.F., Problemy geofiziki XXI veka (Geophysics Problems in the XXI Century), Nikolaev, A.V., Ed., Moscow: Nauka, 2003, book 1, p. 104.Google Scholar
  20. 20.
    Descherevsky, A.V., Lukk, A.A., Sidorin, A.Ya., Vstovsky, G.V., and Timashev, S.F., Nat. Haz. Earth Syst. Sci., 2003, vol. 3, p. 159.Google Scholar
  21. 21.
    Parkhutik, V., Collins, B., Sailor, M., Vstovsky, G., and Timashev, S., Phys. Status Solidi A, 2003, vol. 197, p. 88.CrossRefGoogle Scholar
  22. 22.
    Parkhutik, V., Rayon, E., Ferrer, C., Timashev, S., and Vstovsky, G., Phys. Status Solidi A, 2003, vol. 197, p. 471.CrossRefGoogle Scholar
  23. 23.
    Telesca, L., Lapenna, V., Timashev, S., Vstovsky, G., and Martinelli, G., Phys. Chem. Earth, 2004, vol. 29, p. 389.Google Scholar
  24. 24.
    Timashev, S.F., Solovieva, A.B, and Vstovsky, G.V., Advanced Experimental Methods for Noise Research in Nanoscale Devices, Sikula, J. and Levinshtein, M., Eds., Dordrecht: Kluwer Academic, 204, p. 177.Google Scholar
  25. 25.
    Letnikova, A.F., Vstovskii, G.V., and Timashev, S.F., Zh. Fiz. Khim., 2001, vol. 75, p. 1895.Google Scholar
  26. 26.
    Letnikova, A.F., Vstovsky, G.V., and Timashev, S.F., Medziagotyra, 2001, vol. 7, p. 98.Google Scholar
  27. 27.
    Zhigal’skii, G.P., Usp. Fiz. Nauk, 2003, vol. 173, p. 465.Google Scholar
  28. 28.
    Hooge, F.N., Klienpenning, T.G.M., and Vandamme, L.K.J., Rep. Prog. Phys., 1981, vol. 44, p. 479.CrossRefGoogle Scholar
  29. 29.
    Chui, C., An Introduction to Wavelets, New York: Academic, 1992.Google Scholar
  30. 30.
    Mallat, S. and Hwang, W.L., Singularity Detection and Processing with Wavelets, New York Univ., 1991, p. 12.Google Scholar
  31. 31.
    Timashev, S.F., Ross. Khim. Zh., 1997, vol. 41, p. 17.Google Scholar
  32. 32.
    Timashev, S.F., Ann. N.Y. Acad. Sci., 1999, vol. 879, p. 129.CrossRefGoogle Scholar
  33. 33.
    Weizsacker, C.F., Time, Temporality, Now: Experiencing Time and Concept of Time in an Interdisciplinary Perspective, Atmanspacher, H. and Ruhnau, E., Eds., Berlin: Springer, 1997, p. 91.Google Scholar
  34. 34.
    Ruhnau, E., Time, Temporality, Now: Experiencing Time and Concept of Time in an Interdisciplinary Perspective, Atmanspacher, H. and Ruhnau, E., Eds., Berlin: Springer, 1997, p. 53.Google Scholar
  35. 35.
    Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1967.Google Scholar
  36. 36.
    Zubarev, D.N., Neravnovesnaya statisticheskaya termodinamika (The Nonequilibrium Statistical Thermodynamics), Moscow: Nauka, 1971.Google Scholar
  37. 37.
    Rudoi, Yu.G. and Sukhanov, A.D., Usp. Fiz. Nauk, 2000, vol. 170, p. 1265.CrossRefGoogle Scholar
  38. 38.
    Lifshits, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (The Physical Kinetics), Moscow: Nauka, 1979.Google Scholar
  39. 39.
    Klimontovich, Yu.L., Statisticheskaya fizika otkrytykh sistem (Statistical Physics of Open Systems), Moscow: Yanus-K, 1999, vol. 2.Google Scholar
  40. 40.
    Srianand, R., Petitjean, P., and Ledoux, C., Nature, 2000, vol. 408, p. 931.CrossRefGoogle Scholar
  41. 41.
    Voss, R.F. and Clarke, J., Phys. Rev. Lett., 1976, vol. 36, p. 42.CrossRefGoogle Scholar
  42. 42.
    Parshin, A.N., Vopr. Filos., 2000, no. 6, p. 92.Google Scholar
  43. 43.
    Lure, H., Time, Temporality, Now: Experiencing Time and Concept of Time in an Interdisciplinary Perspective, Atmanspacher, H. and Ruhnau, E., Eds., Berlin: Springer, 1997, p. 81.Google Scholar
  44. 44.
    Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow.Google Scholar
  45. 45.
    Kubo, R., Statistical Mechanics, Amsterdam: Elsevier, 1965.Google Scholar
  46. 46.
    Klafter, J., Blumen, A., and Shlesinger, M.F., Phys. Rev. A, 1987, vol. 35, p. 3081.CrossRefGoogle Scholar
  47. 47.
    Frish, U., Turbulentnost’: Nasledie A.N. Kolmogorova (Turbulence: The Legacy of A.N. Kolmogorov), Moscow: FAZIS, 1998.Google Scholar
  48. 48.
    Erokhin, N.S. and Moiseev, S.S., Problemy geofiziki XXI veka (Geophysics Problems in the XXI Century), Nikolaev, A.V., Ed., Moscow: Nauka, 2003, book 1, p. 160.Google Scholar
  49. 49.
    Kadomtsev, B.B., Dinamika i informatsiya (Dynamics and Information), Moscow: Editorial Board of Usp. Fiz. Nauk, 1997.Google Scholar
  50. 50.
    Vstovskii, G.V., Elementy informatsionnoi fiziki (The ABC of Information Physics), Moscow: Mosk. Gos. Univ., 2002.Google Scholar
  51. 51.
    Timashev, S.F., Bessarabov, D.G., Sanderson, R.D., Marais, S., and Lakeev, S.G., J. Membr. Sci., 2000, vol. 170, p. 191.CrossRefGoogle Scholar
  52. 52.
    Timashev, S.F., Kotova, S.N., Solovieva, A.B., Timashev, P.S., Luzgina, V.N., Rumyantseva, T.N., and Evstigneeva, R.P., Russ. J. Phys. Chem., 2000, vol. 74, p. S1.Google Scholar
  53. 53.
    Kostuchenko, I.G. and Timashev, S.F., Advanced Series in Astrophysics and Cosmology, Gurzadyan, V.G. and Ruffini, R., Eds., Singapore: World Sci., 2000, vol. 10, p. 579.Google Scholar
  54. 54.
    Kostuchenko, I.G. and Timashev, S.F., J. Bifur. Chaos, 1998, vol. 8, p. 805.CrossRefGoogle Scholar
  55. 55.
    Budnikov, E.Yu., Maksimychev, A.V., Kolyubin, A.V., and Timashev, S.F., Elektrokhimiya, 2001, vol. 37, p. 84.Google Scholar
  56. 56.
    Budnikov, E.Yu., S.V. Kozlov, Kolyubin A.V., Timashev S.F., Zh. Fiz. Khim., 1999, vol. 73, p. 530.Google Scholar
  57. 57.
    Timashev, S.F., Budnikov, Y.Yu., Klochikhin, V.L, Lakeev, S.G., and Kostuchenko, I.G., Mathematical Models of Nonlinear Excitation, Transfer, Dynamics and Control in Condensed Systems and Other Media, Uvarova, L.A., Arinstein, A.E., and Latyshev, A.V., Eds., New York: Kluwer Academic/Plenum, 1999, p. 17.Google Scholar
  58. 58.
    Gonzalez-Rodriguez, J.G., Casales, M., Silinas-Bravo, V.M., Espinosa-Medina, M.A., and Martinez-Villafane, A., J. Solid State Electrochem., 2004, vol. 8, p. 290.CrossRefGoogle Scholar
  59. 59.
    Collins, B., Abbi, G., and Sailor, M., Proc. Int. Conf. on Porous Semiconductors—Science and Technology, PSST-2000, Mar 12–17, Madrid, Canham, L. and Parkhutik, V., Eds., UPV, p. 280.Google Scholar
  60. 60.
    Vstovskii, G.V., Deshcherevskii, A.V., Lukk, A.A., Sidorin, A.Ya., and Timashev, S.F., Fiz. Zemli (in press).Google Scholar
  61. 61.
    Garmskii geofizicheskii poligon (The Garm Test Site) Sidorin, A.Ya., Ed., Moscow: OIFZ RAN, 1990.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • S. F. Timashev
    • 1
  1. 1.Russian Federation Scientific Center “Karpov Research Institute of Physical Chemistry”MoscowRussia

Personalised recommendations