Advertisement

Russian Journal of Genetics

, Volume 55, Issue 11, pp 1338–1346 | Cite as

Genetic Diversity of Old and Local Apple (Malus × domestica Borkh.) Cultivars from the Collection of VIR according to AFLP Analysis

  • A. V. ShlyavasEmail author
  • A. A. Trifonova
  • L. V. Dedova
  • K. V. Boris
  • A. M. Kudryavtsev
PLANT GENETICS
  • 10 Downloads

Abstract

The genetic diversity of 123 apple accessions from the collection of the research and production base Pushkin and Pavlovsk Laboratories of VIR, including landraces, Soviet cultivars, and commercial Russian and foreign cultivars, was for the first time estimated using the AFLP technique. A total of 355 fragments were obtained, 319 of which were polymorphic (89.86%), and each of the accessions had a unique set of AFLP fragments. The level of diversity of modern commercial cultivars was lower (74.11%, Не = 0.202, I = 0.302) as compared with landraces (89.20%, Не = 0.238, I = 0.366). A wide range of genetic differences between the studied accessions (0.99–0.63) was demonstrated. The statistical analysis of the data obtained made it possible to divide the studied samples into two groups. The first group included most of the analyzed landraces; with no clear differentiation of these landraces by origin. The second group included modern commercial Russian and foreign apple cultivars, Soviet cultivars, and some landraces.

Keywords:

apple landraces AFLP analysis genetic resources 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 17-29-08020) and by state contracts no. 0112-2019-0002 and no. 0662-2019-0004.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Kozlovskaya, Z.A., Selektsiya yabloni v Belarusi (Apple Tree Breeding in Belorussia), Minsk: Belaruskaya Navuka, 2015.Google Scholar
  2. 2.
    Volk, G.M., Chao, C.T., Norelli, J., et al., The vulnerability of U.S. apple (Malus) genetic resources, Genet. Resour. Crop Evol., 2015, vol. 62, no. 5. pp. 765—794.  https://doi.org/10.1007/s10722-014-0194-2 CrossRefGoogle Scholar
  3. 3.
    http://ww.fao.org.Google Scholar
  4. 4.
    Aleksanyan, S.M., Ponomarenko, V.V., Burmistrov, L.A., et al., Sovremennye metody i mezhdunarodnyi opyt sokhraneniya genofonda dikorastushchikh rastenii na primere dikikh plodovykh (Modern Methods and International Experience in Preserving the Gene Pool of Wild Plants Using Wild Fruit Crops as an Example), Almaty, 2011.Google Scholar
  5. 5.
    Aleksanyan, S.M., The strategy of interaction of the world genebanks in the context of globalization, Tr. Prikl. Bot.,Genet. Sel., 2007, vol. 164, pp. 11—33.Google Scholar
  6. 6.
    Shlyavas, A.V., Bagmet, L.V., Trifonova, A.A., and Boris, K.V., Katalog mirovoi kollektsii VIR: yablonya (World Collection Catalog of Vavilov All-Russian Scientific Research Institute of Plant Genetic Resources: Apple), issue 863: Sorta narodnoi selektsii v kollektsii geneticheskikh resursov yabloni nauchno-proizvodstvennoi bazy “Pushkinskie i Pavlovskie laboratorii VIR” (Apple Landraces in the Genetic Resources’ Collection at the Pushkin and Pavlovsk Experiment Stations of  Vavilov All-Russian Institute of Plant Genetic Resources), St. Petersburg, 2018.  https://doi.org/10.30901/978-5-905954-72-6
  7. 7.
    Nesterov, Ya.S. and Karamysheva, V.I., Klassifikator roda Malus Mill. (Genus Malus Mill. Classifier), Leningrad: Vsesoyuz. Inst. Rastenievod., 1976.Google Scholar
  8. 8.
    Watkins, R. and Smith, R.A., Descriptors List for Apple (Malus), Rome: International Board for Plant Genetic Resources Secretariat, 1982.Google Scholar
  9. 9.
    Wang, K., Liu, F.Z., and Cao, Y.F., Descriptors and Data Standard for Apple (Malus spp. Mill.), Beijing: China Agriculture Press, 2005.Google Scholar
  10. 10.
    Tignon, M., Kettmann, R., and Watillon, B., AFLP: use for the identification of apple cultivars and mutants, Acta Hortic., 2000, vol. 521, pp. 219—226.  https://doi.org/10.17660/ActaHortic.2000.521.24
  11. 11.
    Kenis, K. and Keulemans, J., Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers, Mol. Breed., 2005, vol. 15, pp. 205—219.  https://doi.org/10.1007/s11032-004-5592-2 CrossRefGoogle Scholar
  12. 12.
    Cevik, V. and King, J., High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp., Theor. Appl. Genet., 2002, vol. 105, pp. 346—354.  https://doi.org/10.1007/s00122-002-0904-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Xu, M.L. and Korban, S.S., Saturation mapping of the apple scab resistance gene Vf using AFLP markers, Theor. Appl. Genet., 2000, vol. 101, pp. 844—851.  https://doi.org/10.1007/s001220051551 CrossRefGoogle Scholar
  14. 14.
    Xu, M.L., Huaracha, E., and Korban, S.S., Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple, Genome, 2001, vol. 44, pp. 63—70.  https://doi.org/10.1139/g00-103 CrossRefPubMedGoogle Scholar
  15. 15.
    Savelyeva, E.N. and Kudryavtsev, A.M., AFLP analysis of genetic diversity in the genus Malus Mill. (apple), Russ. J. Genet., 2015, vol. 51, no. 10, pp. 966—973.  https://doi.org/10.1134/S1022795415100154 CrossRefGoogle Scholar
  16. 16.
    Vos, P.R., Hogers, M., Bleeker, M., et al., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., 1995, vol. 23, pp. 4407—4414.CrossRefGoogle Scholar
  17. 17.
    Benbouza, H., Jacquemin, J.M., Baudoin, J.P., and Mergeai, G., Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels, BASE, 2006, vol. 10, no. 2, pp. 77—81.Google Scholar
  18. 18.
    Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537—2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  19. 19.
    Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, pp. 1—9.Google Scholar
  20. 20.
    Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945—959.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lacis, G., Kota, I., Ikase, L., and Rungis, D., Molecular characterization of the Latvian apple (Malus) genetic resource collection based on SSR markers and scab resistance gene Vf analysis, Plant Genet. Resour.: Charact. Util., 2011, vol. 9, no. 2, pp. 189—192.  https://doi.org/10.1017/S1479262111000384 CrossRefGoogle Scholar
  22. 22.
    Garkava-Gustavsson, L., Mujajub, C., Sehic, J., et al., Genetic diversity in Swedish and Finnish heirloom apple cultivars revealed with SSR markers, Sci. Hortic., 2013, vol. 162, pp. 43—48.  https://doi.org/10.1016/j.scienta.2013.07.040 CrossRefGoogle Scholar
  23. 23.
    Lassois, L., Denance, C., Ravon, E., et al., Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers, Plant Mol. Biol. Rep., 2016, vol. 34, pp. 827—844.  https://doi.org/10.1007/s11105-015-0966-7 CrossRefGoogle Scholar
  24. 24.
    Pereira-Lorenzo, S., Fischer, M., Ramos-Cabrer, A.M., and Castro, I., Apple (Malus spp.) breeding: present and future, Adv. Plant Breed. Strategies: Fruits, 2018, vol. 3, pp. 3—29.  https://doi.org/10.1007/978-3-319-91944-7_1 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Shlyavas
    • 1
    Email author
  • A. A. Trifonova
    • 2
  • L. V. Dedova
    • 2
  • K. V. Boris
    • 2
  • A. M. Kudryavtsev
    • 2
  1. 1.Federal Research Center Vavilov All-Russian Institute of Plant Genetic ResourcesSt. PetersburgRussia
  2. 2.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations