Advertisement

Russian Journal of Genetics

, Volume 55, Issue 11, pp 1306–1314 | Cite as

The Characteristics of Primary Hybrids Obtained in Crosses between Common Wheat from China and Cultivated Rye

  • V. P. Pyukkenen
  • G. I. Pendinen
  • O. P. MitrofanovaEmail author
PLANT GENETICS
  • 23 Downloads

Abstract

The gene pool of winter common wheat from China maintained in the VIR collection is unique in the variety of alleles of the genes of selection-valuable traits and properties. Our previous studies have revealed among this wheat the samples that cross well with sowing rye, but in most cases, they had poor winter hardiness. Wheat-rye hybrids were produced in order to involve this material in Russian breeding. A directional selection for winter hardiness and high productivity in several subsequent generations of self-pollinated hybrids was performed. Evaluation of the F1 hybrids in the autumn–winter seeding in the climatic conditions of the Northwest region of the Russian Federation (Pushkin) revealed their differences in viability, winter hardiness, and formation of F2 hybrid caryopses. The subsequent directional individual selection for high overwintering and productivity in F2–F7 hybrid self-pollinated populations led to the production of primary hexaploid wheat-rye lines (2n = 6x = 42, BBAARR). Characteristics of 17 lines are given in the article. The statistically significant heterogeneity of the lines according to the studied traits is shown using the Kruskal–Wallis rank criterion (H). We revealed the elimination of the D genome chromosomes and the presence of the complete genomes B, A, and R in all lines using the method of genomic in situ hybridization. Along with hexaploid plants, forms containing additionally from one to five chromosomes of the D genome were found in one line. The produced primary winter-hardy and highly productive hexaploid wheat-rye lines are a new initial material for wheat and triticale breeding.

Keywords:

the VIR wheat collection Triticum aestivum/Secale cereale hybrids spike fertility winter hardiness GISH genome identification 

Notes

FUNDING

This work was carried out as part of the state assignment in accordance with the thematic plan of VIR on the topic no. 0662-2019-0006 “Search for, Maintaining Viability, and Revealing the Potential of Hereditary Variability of the VIR World Collection of Grain and Cereal Crops for the Development of an Optimized Genebank and Rational Use in Selection and Plant Growing,” state registration number EGISU NIOKR AAAA-A16-116040710373-1, as well as on the basis of a unique scientific installation VIR Collection of Plant Genetic Resources.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

11177_2019_1197_MOESM1_ESM.docx (645 kb)
11177_2019_1197_MOESM1_ESM.docx

REFERENCES

  1. 1.
    A History of Wheat Breeding in China, He, Z.H., Rajaram, S., Xin, Z.Y., and Huang, G.Z., Eds., Mexico: D.F. CIMMYT, 2001. https://pdfs.semanticscholar.org/9e3e/cd41c29ee0b9921b52dc0b3adddcd6593c36.pdf.Google Scholar
  2. 2.
    Zhou, Y., Chen, Zh., Cheng, M., et al., Uncovering the dispersion history, adaptive evolution and selection of wheat in China, Plant Biotechnol. J., 2018, vol. 16, no. 1, pp. 280—291.  https://doi.org/10.1111/pbi.12770 CrossRefPubMedGoogle Scholar
  3. 3.
    Vavilov, N.I., Mirovye resursy khlebnykh zlakov: pshenitsa (Global Cereal Resources: Wheat), Moscow: Nauka, 1964.Google Scholar
  4. 4.
    Molnar-Lang, M., The crossability of wheat with rye and other related species, Wheat—Perennial Triticeae Introgressions: Major Achievements and Prospects, Springer-Verlag, 2015, pp. 103—120.  https://doi.org/10.1007/978-3-319-23494-6_4 Google Scholar
  5. 5.
    Hao, M., Luo, J., Yang, M., et al., Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye, Genome, 2011, vol. 54, no. 12, pp. 959—964.  https://doi.org/10.1139/g11-062 CrossRefPubMedGoogle Scholar
  6. 6.
    Wu, J., Kong, X., Wang, J., et al., Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1, Plant Physiol., 2011, vol. 157, pp. 2120—2130.  https://doi.org/10.1104/pp.111.185272 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang, H., Gao, M., Wang, S., et al., Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.), Front. Plant Sci., 2015, vol. 6, article 470.  https://doi.org/10.3389/fpls.2015.00470 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xue, S., Li, G., Jia, H., et al., Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2010, vol. 121, no. 1, pp. 147—156.  https://doi.org/10.1007/s00122-010-1298-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Xue, S., Xu, F., Tang, M., et al., Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2011, vol. 123, no. 6, pp. 1055—1063.  https://doi.org/10.1007/s00122-011-1647-z CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, F., He, Z.H., Xia, X.C., et al., Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars, Theor. Appl. Genet., 2006, vol. 112, no. 3, pp. 400—409.  https://doi.org/10.1007/s00122-005-0095-z CrossRefPubMedGoogle Scholar
  11. 11.
    Pyukkenen, V.P., A collection of soft wheat based on good crossability with rye, Geneticheskie resursy kul’turnykh rastenii v XXI v.: sostoyanie, problemy, perspektivy (Genetic Resources of Cultivated Plants in the 19th Century: State, Problems, Prospects) (Proc. Vavilov Int. Conf.), St. Petersburg, Vseross. Inst. Rastenievod., 2007, pp. 583—585.Google Scholar
  12. 12.
    Blum, A., The abiotic stress response and adaptation of Triticale: a review, Cereal Res. Comm., 2014, vol. 42, no. 3, pp. 359—375.  https://doi.org/10.1556/CRC.42.2014.3.1 CrossRefGoogle Scholar
  13. 13.
    Limin, A.E., Dvorak, J., and Fowler, D.B., Cold hardiness in hexaploid Triticale,Can. J. Plant Sci., 1985, vol. 65, pp. 487—490.CrossRefGoogle Scholar
  14. 14.
    Stepochkin, P.I., Morphogenesis in populations of triticale, wheat, rye and its use in Western Siberia, Doctoral (Agric.) Dissertation, Novosibirsk: Siberian Research Institute of Plant Cultivation and Breeding, 2008.Google Scholar
  15. 15.
    Merezhko, A.F., Udachin, R.A., Zuev, E.V., et al., Popolnenie, sokhranenie v zhivom vide i izuchenie mirovoi kollektsii pshenitsy, egilopsa i tritikale (metodicheskie ukazaniya) (Replenishment, Conservation in the Living Form, and Study of the World Collection of Wheat, Aegilops and Triticale (Methodic Guidelines)), Merezhko, A.F., Ed., St. Petersburg: Vseross. Inst. Rastenievod., 1999.Google Scholar
  16. 16.
    http://www.pogodaiklimat.ru/monitor.php?id=26063.Google Scholar
  17. 17.
    Shirokii unifitsirovannyi klassifikator SEV roda Triticum L. (Wide Unified CMEA Classifier of the Genus Triticum L.), Korneichuk, V.A., Ed., Leningrad, 1989.Google Scholar
  18. 18.
    Wienand, U. and Feix, G., Zein specific restriction enzyme fragments of maize DNA, FEBS Lett., 1980, vol. 116, pp. 14—16. https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/0014-5793(80)80518-7CrossRefGoogle Scholar
  19. 19.
    Leitch, A., Schwarzacher, T., Jacson, D., and Leitch, I., In situ Hybridization: A Practical Guide, Oxford: BIOS, 1994.Google Scholar
  20. 20.
    Pendinen, G., Gavrilenko, T., Spooner, D.M., and Jiang, J., Allopolyploid speciation of the tetraploid Mexican potato species revealed by genomic in situ hybridization, Genome, 2008, vol. 51, pp. 714—720.  https://doi.org/10.1139/G08-052 CrossRefPubMedGoogle Scholar
  21. 21.
    Grabovets, A.I. and Fomenko, M.A., Creation and introduction of wheat and triticale varieties with wide ecological adaptation, Zernobobovye Krupyanye Kul’t., 2013, no. 2, pp. 41—47. https://journal.vniizbk.ru/ru/ backup/13-22013.htmlGoogle Scholar
  22. 22.
    Pyukkenen, V.P. and Pendinen, G.I., Production of stable allopolyploid lines based on partially fertile F1 hybrids of Triticum aestivum L. originating from China with rye, Secale cereale L., Nauchnoe obespechenie agropromyshlennogo kompleksa na sovremennom etape (Scientific Support of the Agro-Industrial Complex at the Current Stage, Collection of Papers of International Theoretical and Practical Conference), Rostov-on-Don: Rassvet, 2015, pp. 37—44.Google Scholar
  23. 23.
    Alfares, W., Bouguennec, A., Balfourier, F., et al., Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.), Genetics, 2009, vol. 183, no. 2, pp. 469—481.  https://doi.org/10.1534/genetics.109.107706 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cai, H. and Liu, C., Characrerizing the sequences of Kr gene in different genotypes of common wheat, Triticeae Genomics Genet., 2012, vol. 3, no. 4, pp. 38—43.  https://doi.org/10.5376/tgg.2012.03.0004 CrossRefGoogle Scholar
  25. 25.
    Manickavelu, A., Koba, T., and Mishina, K., Molecular characterization of crossability gene Kr1 for intergeneric hybridization in Triticum aestivum (Poaceae: Triticeae), Plant Syst. Evol., 2009, vol. 278, no. 1, pp. 125—131.  https://doi.org/10.1007/s00606-008-0139-3 CrossRefGoogle Scholar
  26. 26.
    Lein, A.D., Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen, Z. Indukt. Abstamm.-Vererbungsl., 1943, vol. 81, no. 1, pp. 28—61.Google Scholar
  27. 27.
    Loginova, D.B. and Silkova, O.G., Mitotic behavior of centromeres in meiosis as the fertility restoration mechanism in wheat—rye amphihaploids, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 818—827.  https://doi.org/10.1134/S1022795414070114 CrossRefGoogle Scholar
  28. 28.
    Silkova, O.G., Adonina, I.G., Krivosheina, E.A., and Shchapova, A.I., Chromosome pairing in meiosis of partially fertile wheat/rye hybrids, Plant Reprod., 2013, vol. 26, pp. 33—41.  https://doi.org/10.1007/s00497-012-0207-2 CrossRefGoogle Scholar
  29. 29.
    Cai, X., Xu, S.S., and Zhu, X., Mechanism of haploidy-depent unreductional meiotic cell division of polyploid wheat, Chromosoma, 2010, vol. 119, pp. 275—285.  https://doi.org/10.1007/s00412-010-0256-y CrossRefPubMedGoogle Scholar
  30. 30.
    Xu, S.J. and Joppa, L.R., First-division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa,Plant Breed., 2000, vol. 119, no. 3, pp. 233—241.  https://doi.org/10.1046/j.1439-0523.2000.00472.x CrossRefGoogle Scholar
  31. 31.
    Li, H., Guo, X., Wang, C., and Ji, W., Spontaneous and divergent hexaploid Triticale derived from common wheat × rye by complete elimination of D-genome chromosomes, PLoS One, 2015, vol. 10, no. 3.  https://doi.org/10.1371/journal.pone.0120421 CrossRefGoogle Scholar
  32. 32.
    Shcherban, A.B., The reorganization of plant genomes during allopolyploidization, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 6, pp. 444—450.  https://doi.org/10.1134/S2079059713060087 CrossRefGoogle Scholar
  33. 33.
    Kalinka, A. and Achrem, M., Reorganization of wheat and rye genomes in octoploid triticale (×Triticosecale), Planta, 2018, vol. 247, no. 4, pp. 807—829.  https://doi.org/10.1007/s00425-017-2827-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Ma, X.F. and Gustafson, J.P., Allopolyploidization-accommodated genomic sequence changes in Triticale,Ann. Bot., 2008, vol. 101, no. 6, pp. 825—832.  https://doi.org/10.1093/aob/mcm331 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dou, Q., Tanaka, H., Nakata, N., and Tsujimoto, H., Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid Triticale,Theor. Appl. Genet., 2006, vol. 114, pp. 41—47.  https://doi.org/10.1007/s00122-006-0408-x CrossRefPubMedGoogle Scholar
  36. 36.
    Hao, M., Luo, J., Zhang, L., et al., Production of hexaploid triticale by a synthetic hexaploid wheat—rye hybrid method, Euphytica, 2013, vol. 193, pp. 347—357.  https://doi.org/10.1007/s10681-013-0930-2 CrossRefGoogle Scholar
  37. 37.
    Hills, M.J., Halli, L.M., Messenger, F., et al., Evaluation of crossability between triticale (×Triticosecale Wittmack) and common wheat, durum wheat and rye, Environ. Biosafety Res., 2007, vol. 6, no. 4, pp. 249—257.  https://doi.org/10.1051/ebr:2007046 CrossRefPubMedGoogle Scholar
  38. 38.
    McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, in The 12th International Wheat Genetics Symposium, Yokohama, 2013. http://www.shigen.nig.ac.jp/wheat/komugi/ genes/download.jsp.Google Scholar
  39. 39.
    Motomura, Y., Kobayashi, F., Iehisa, J.C.M., and Takumi, S., A major quantitative trait locus for cold-responsive gene expression is linked to frost-resistance gene Fr-A2 in common wheat, Breed. Sci., 2013, vol. 63, pp. 58—67.  https://doi.org/10.1270/jsbbs.63.58 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. P. Pyukkenen
    • 1
  • G. I. Pendinen
    • 1
  • O. P. Mitrofanova
    • 1
    Email author
  1. 1.Vavilov All-Russian Institute of Plant Genetic ResourcesSt. PetersburgRussia

Personalised recommendations