Advertisement

Russian Journal of Genetics

, Volume 55, Issue 8, pp 969–977 | Cite as

Characterization of Genetic Diversity in Cultivated Emmer Wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] Landrace Populations from Turkey by SSR

  • Ö. ÖzbekEmail author
  • S. Demir
PLANT GENETICS
  • 44 Downloads

Abstract

The aim of this study is an evaluation of the genetic diversity among nine emmer wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] landrace populations, grown in Turkey by using simple sequence repeats (SSR) technique. Nine SSR primers produced 497 alleles, which ranged between 57 and 376 bp and they were 100% polymorphic. The mean number of allele per locus (na), the mean number of the effective allele (nea), the mean value of average genetic diversity (He_avg.), and the mean value of genetic diversity (He) were determined as 40.89, 13, 0.76, and 0.90 respectively. The genetic differentiation and the gene flow between populations calculated as 0.15 and 1.41 respectively. The A genome showed significantly higher estimates for He_avg. and na than the B genome according to Mann–Whitney U test analysis. Turkish emmer wheat landraces populations displayed considerably high genetic diversity. The SSR marker system determined efficiently the genetic diversity among the emmer wheat populations and it was successful to differentiate the landrace populations from each other. In situ and on-farm conservation strategies should be planned urgently in addition to the ex situ conservation programs for emmer wheat landraces as invaluable genetic resources.

Keywords:

Triticum turgidum L. ssp. dicoccon emmer wheat SSR genetic diversity genetic differentiation 

Notes

ACKNOWLEDGMENTS

We are grateful to Aegean Agricultural Research Institute in Izmir, Turkey for providing kindly emmer wheat seed samples.

FUNDING

This is the master thesis of Sevilay Demir and it was granted by the Scientific Research Projects Department (BAP) of Hitit University with the project number of FEF03.13.001.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Bar-Yosef, O., On the nature of transitions: the middle to upper Palaeolithic and the Neolithic revolution, Cambridge Archaeol. J., 1998, vol. 8, pp. 141–163.CrossRefGoogle Scholar
  2. 2.
    Özkan, H., Brandolini, A., Pozzi, C., et al., A reconsideration of the domestication geography of tetraploid wheats, Theor. Appl. Genet., 2005, vol. 110, pp. 1052–1060.CrossRefPubMedGoogle Scholar
  3. 3.
    Luo, M.C., Yang, Z.L., You, F.M., Kawahara, T., Waines, J.G., and Dvorak, J., The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication, Theor. Appl. Genet., 2007, vol. 114, pp. 947–959.CrossRefPubMedGoogle Scholar
  4. 4.
    Prasad, M., Varshney, R.K., Roy, J.K., Balyan, H.S., and Gupta, P.K., The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat, Theor. Appl. Genet., 2000, vol. 100, pp. 584–592.Google Scholar
  5. 5.
    Manifesto, M.M., Schlatter, A.R., Hopp, H.E., Suárez, E.Y., and Dubcovsky, J., Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers, Crop Sci., 2001, vol. 41, pp. 682–690.CrossRefGoogle Scholar
  6. 6.
    Huang, X.Q., Börner, A., Röder, M.S., and Ganal, M.W., Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707.CrossRefPubMedGoogle Scholar
  7. 7.
    Sud, S., Bains, N.S., and Nanda, G.S., Genetic relationships among wheat genotypes, as revealed by microsatellite markers and pedigree analysis, J. Appl. Genet., 2005, vol. 46, no. 4, pp. 375–379.PubMedGoogle Scholar
  8. 8.
    Stępień, Ł., Mohler, V., Bocianowski, J., and Koczyk, G., Assessing genetic diversity of Polish wheat (Triticum aestivum) varieties using microsatellite markers, Genet. Resour. Crop Evol., 2007, vol. 54, pp. 1499–1506.CrossRefGoogle Scholar
  9. 9.
    Al-Khanjari, S., Hammer, K., Buerkert, A., and Röder, M.S., Molecular diversity of Omani wheat revealed by microsatellites: 2. Hexaploid landraces, Genet. Resour. Crop Evol., 2007, vol. 54, pp. 1407–1417.CrossRefGoogle Scholar
  10. 10.
    Akfirat, F.S. and Uncuoglu, A.A., Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers, Biochem. Genet., 2013, vol. 51, pp. 223–229.CrossRefGoogle Scholar
  11. 11.
    Chen, X., Min, D., Yasir, T.A., and Hu, Y.G., Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers, PLoS One, 2012, vol. 7, no. 9. e44510.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sönmezoğlu, O.A., Bozmaz., B., Yildirim, A., Kandemir, N., and Aydin, N., Genetic characterization of Turkish bread wheat landraces based on microsatellite markers and morphological characters, Turk. J. Biol., 2012, vol. 36, pp. 589–597.Google Scholar
  13. 13.
    Meena, M.R., Singh, N., Jain N., and Singh, S.S., Identification of molecular marker linked to stem rust resistance gene in synthetic hexaploid lines of wheat (Triticum aestvium L.), Afr. J. Agric. Res., 2013, vol. 8, no. 41, pp. 5064–5068.Google Scholar
  14. 14.
    Arora, A., Kundu, S., Dilbaghi, N., Sharma, I., and Tiwari, R., Population structure and genetic diversity among Indian wheat varieties using microsatellite (SSR) markers, Aust. J. Crop. Sci., 2014, vol. 8, no. 9, pp. 1281–1289.Google Scholar
  15. 15.
    Bafghi, R.M., Baghizadeh, A., Mohammadi-Nejad, G., and Nakhoda, B., Assessment of genetic diversity in Iranian wheat (Triticum aestivum L.) cultivars and lines using microsatellite markers, J. Plant Mol. Breed., 2014, vol. 281, pp. 74–89.Google Scholar
  16. 16.
    Teklu, Y., Hammer, K., and Röder, M.S., Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation, Genet. Resour. Crop Evol. 2007, vol. 54, pp. 543–554.CrossRefGoogle Scholar
  17. 17.
    Duwayri, M., Migdadi, H., Sadder, M., Kafawin, O., Ajlouni, M., Amri, A., and Nachit, M., Use of SSR markers for characterizing cultivated durum wheat and its naturally occurring hybrids with wild wheat, Jordan J. Agric. Sci., 2007, vol. 3, no. 4, pp. 398–410. http://taylor0.biology.ucla.edu/structureHarvester/completedJobs/holy-rain-db82/summary.html.Google Scholar
  18. 18.
    Szucs, P., Juhasz, A., Karsai, I., Lang, L., Veisz, O., and Bedo, Z., Use of molecular markers for studying genetic diversity in durum wheat (Triticum durum Desf.), J. Genet. Breed., 2000, vol. 54, pp. 25–33.Google Scholar
  19. 19.
    Figliuolo, G. and Perrino, P., Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs, Genet. Resour. Crop Evol., 2004, vol. 51, pp. 519–527.CrossRefGoogle Scholar
  20. 20.
    Mondini, L., Grausgruber, H., Porceddu E., and Pagnotta, M.A., Assessment of genetic diversity in European emmer wheat populations, Proceedings of the 11th International Wheat Genetics Symposium, Appels, R., Eastwood, R., Lagudah, E., Langridge, P., Mackay, M., McIntyre, L., and Sharp, P., Eds., Sydney: Sydney University Press, 2008, pp. 264–266.Google Scholar
  21. 21.
    Leigh, F.J., Oliveira, H.R., Mackay, I., Jones, H., Smith, L., Wolters P., Charles, M., Jones, M., Powell, W., Brown T.A., and Jones, G., Remnant genetic diversity detected in an ancient crop: Triticum dicoccon Schrank landraces from Asturias, Spain, Genet. Resour. Crop Evol., 2013, vol. 60, pp. 355–365.CrossRefGoogle Scholar
  22. 22.
    Pagnotta, M.A., Mondini L., and Atallah, M.F., Morphological and molecular characterization of Italian emmer wheat accessions, Euphytica, 2005, vol. 146, pp. 29–37.CrossRefGoogle Scholar
  23. 23.
    Terzi, V., Morcia, C., Stanca, A.M., Kucera, L., Fares, C., Codianni, P., Fonzo, N.D., and Faccioli, P., Assessment of genetic diversity in emmer (Triticum dicoccon Schrank) durum wheat (Triticum durum Desf.) derived lines and their parents using mapped and unmapped molecular markers, Genet. Resour. Crop Evol., 2007, vol. 54, pp. 1613–1621.CrossRefGoogle Scholar
  24. 24.
    Salunkhe, A., Tamhankar, S., Tetali, S., Zaharieva, M., Bonnett, D., Trethowan R., and Misra, S., Molecular genetic diversity analysis in emmer wheat (Triticum dicoccon Schrank) from India, Genet. Resour. Crop Evol., 2013, vol. 60, pp. 165–174.CrossRefGoogle Scholar
  25. 25.
    Amani, J., Kazemi, R., Abbasi, A.R., and Salmanian, A.H., A simple and rapid leaf genomic DNA extraction method for polymerase chain reaction analysis, Iran J. Biotechnol., 2011, vol. 9, no. 1, pp. 69–71.Google Scholar
  26. 26.
    Yeh, F.C., Yang, R., Boyle, T.J., et al., POPGENE. Microsoft Windows-Based Freeware for Population Genetic Analysis: Release 1.32, Edmonton: Molecular Biology and Biotechnology Centre, University of Alberta, 2000. http://www.ualberta.ca/~fyeh/popgene_download.html.Google Scholar
  27. 27.
    Nei, M., Analysis of gene diversity in subdivided populations (population structure/genetic variability/heterozygosity/gene differentiation), Proc. Natl. Acad. Sci. U.S.A., 1973, vol. 70 (12, part 1), pp. 3321–3323.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pritchard, J.K., Stevens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, pp. 2611–2620.CrossRefPubMedGoogle Scholar
  30. 30.
    Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283–292.CrossRefGoogle Scholar
  31. 31.
    Özberk, İ., Atay, S., Altay, F., Cabi, E., Özkan, H., and Atlı, A., Türkiye’nin Buğday Atlası (Wheat Map of Turkey), (Doğal Hayatı Koruma Vakfı), İstanbul, Turkey: WWF-Türkiye, 2016.Google Scholar
  32. 32.
    Özbek, Ö., Taşkın, B.G., Şan, S.K., Eser, V., and Arslan, O., Gliadin polymorphism in Turkish cultivated emmer wheat (Triticum turgidum L. ssp. dicoccon (Schrank) Thell.) landraces, Plant. Syst. Evol., 2011, vol. 296, nos. 1–2, pp. 121–135.CrossRefGoogle Scholar
  33. 33.
    Özbek, Ö., Taşkın, B.G., Şan, S.K., Eser, V., and Arslan, O., High-molecular-weight glutenin subunit variation in Turkish emmer wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] landraces, Plant. Syst. Evol., 2012, vol. 298, pp. 1795–1804.CrossRefGoogle Scholar
  34. 34.
    Özbek, Ö., Taşkın, B.G., Şan, S.K., Eser, V., and Arslan, O., Genetic characterization of Turkish cultivated emmer wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] landraces based on isoenzyme analysis, Cereal Res. Commun., 2013, vol. 41, no. 2, pp. 304–315.CrossRefGoogle Scholar
  35. 35.
    Kaymaz (Yeşbek), A. and İzbırak, A., Molecular characterization of genetic diversity among T. dicoccoides and T. dicoccon populations by RAPD-PCR technique, Hacettepe J. Biol. Chem., 2010, vol. 38, no. 4, pp. 333–344.Google Scholar
  36. 36.
    Masood, M.S., Javid, A., Rabbani, M.A., and Anwar, R., Phenotypic diversity and trait association in bread wheat landraces from Balouchistan, Pakistan, Pak. J. Bot., 2005, 37, no. 4, pp. 949–957.Google Scholar
  37. 37.
    Brown, A.H.D., The genetic structure of crop landraces and the challenge to conserve them in situ on farms, in Genes in the Field: On-Farm Conservation of Crop Diversity, Brush, S.B., Ed., Boca Raton, FL: Lewis Publishers, 2000, pp. 29–48.Google Scholar
  38. 38.
    Altieri, M.A. and Merrick, L., In situ conservation of crop genetic resources through maintenance of traditional farming systems, Econ. Bot., 1987, vol. 1, pp. 86–96.CrossRefGoogle Scholar
  39. 39.
    Jaradat, A.A., Wheat landraces: a mini review, Emir. J. Food. Agric., 2013, vol. 25, no. 1, pp. 20–29.CrossRefGoogle Scholar
  40. 40.
    Vavilov, N.I., Origin and Geography of Cultivated Plants, Cambridge: Cambridge University Press, 1992.Google Scholar
  41. 41.
    Dvorak, J., Luo, M.-Ch., and Akhunov, E.D., N.I. Vavilov’s theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution, Czech. J. Genet. Plant. Breed., 2011, vol. 47, special issue, pp. 20–27.CrossRefGoogle Scholar
  42. 42.
    Levinson, G. and Gutman, G.A., High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage m13 in Escherichia coli k-12, Nucleic Acids Res., 1987, vol. 15, no. 13, pp. 5323–5338.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sackville Hamilton, N.R., and Chorlton, K.H., Regeneration of Accessions in Seed Collections: A Decision Guide, no. 5 of Handbooks for GeneBanks, Rome: IPGRI, 1997.Google Scholar
  44. 44.
    Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., and Ganal, M.W., A microsatellite map of wheat, Genetics, 1998, vol. 149, pp. 2007–2023.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Science and Art, Hitit UniversityÇorumTurkey

Personalised recommendations