Advertisement

Russian Journal of Genetics

, Volume 55, Issue 3, pp 309–318 | Cite as

Allelic Diversity of Hordein-Coding Loci Hrd A and Hrd B in Cultivated (Hordeum vulgare L.) and Wild (Hordeum spontaneum C. Koch) Barley from Jordan (as a Part of the Fertile Crescent)

  • A. A. PomortsevEmail author
  • S. V. Boldyrev
  • E. V. Lyalina
PLANT GENETICS

Abstract

Starch gel electrophoresis was used to study polymorphism of hordeins encoded by the Hrd A and Hrd B loci in 34 local varieties of cultivated barley and 19 accessions of wild barley from Jordan. Thirty-two and 26 alleles for the Hrd A locus were identified in H. vulgare and H. spontaneum, respectively, and 42 and 32 alleles were detected for the Hrd B locus. Allelic frequencies of the Hrd A and Hrd B loci in cultivated barley varied within the range of 0.0029–0.2707 and 0.0029–0.1824, respectively, and within the range of 0.0105–0.1263 and 0.0105–0.0947 in wild barley. Six out of 52 alleles of Hrd A and four out of 70 alleles of Hrd В were common between Jordanian H. spontaneum and H. vulgare. Two of six common alleles of the Hrd A locus found in Jordanian wild and cultivated barley and one common allele of the Hrd В locus were discovered earlier among H. spontaneum accessions from Iran, Turkey, and Syria. However, three common alleles of Hrd A and three common alleles of Hrd В were detected only in Jordanian accessions of wild and cultivated barley. According to archaeological records, the earliest indications of barley utilization in Jordan appeared only in 6700 BC, whereas they were dated in Syria to 9000 BC and in Israel to 17 000 BC. We concluded that Jordan cannot be considered as domestication center of barley. At the same time, Jordanian H. spontaneum could have contributed some alleles of hordein-coding loci to the gene pool of H. vulgare owing to introgression resulting from spontaneous hybridization over the course of crop diffusion from the domestication center outward.

Keywords:

cultivated barley wild barley hordein-coding loci centers of origin Fertile Crescent 

Notes

ACKNOWLEDGMENTS

This study was funded by the Presidium of the Russian Academy Sciences, Program no. 41 “Biodiversity of Natural Systems and Biological Resources of Russia.”

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Provan, J., Russell, J.R., Booth, A., and Powell, W., Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus Hordeum, Mol. Ecol., 1999, no 8, pp. 505—511.  https://doi.org/10.1046/j.1365-294X.1999.00545.x
  2. 2.
    Bakhteev, F.Kh., On the history of the culture of barley in the Soviet Union, in Materialy po istorii zemledeliya SSSR, sb. II (Materials on the Agriculture History in the Soviet Union, Collection 2), Moscow: Akad. Nauk SSSR, 1956, pp. 204—257.Google Scholar
  3. 3.
    Vavilov, N.I., The doctrine of origin of cultivated plants after Darwin, Sov. Nauka, 1940, no. 2, pp. 55—75.Google Scholar
  4. 4.
    Åberg, E., Hordeum agriocrithon nova sp. a wild six rowed barley, Ann. R. Agric. Coll. Sweden, 1938, vol. 6, pp. 159—216.Google Scholar
  5. 5.
    Zhang, Q., Saghai Maroof, M.A., and Yang, P.G., Ribosomal DNA polymorphisms and the Oriental-Occidental genetic differentiation in cultivated barley, Theor. Appl. Genet., 1992, vol. 84, no. 5, pp. 682—687.  https://doi.org/10.1007/BF00224168 CrossRefGoogle Scholar
  6. 6.
    Molino-Cano, J.-L., Fra-Mon, P., Salcedo, G., et al., Marocco as possible domestication centre for barley: biochemical and agromorphological evidence, Theor. Appl. Genet., 1987, vol. 73, no. 4, pp. 531—536.  https://doi.org/10.1007/BF00289190 CrossRefGoogle Scholar
  7. 7.
    Negassa, M., Patterns of phenotypic diversity in an Ethiopian barley collection, and the Arussi-Bale Higland as a center of origin of barley, Hereditas, 1985, vol. 102, no. 1, pp. 139—150.  https://doi.org/10.1111/j.1601-5223.1985.tb00474.x CrossRefGoogle Scholar
  8. 8.
    Lev-Yadum, S., Gopher, A., and Abbo, S., The cradle of agriculture, Science, 2000, vol. 288, pp. 1602—1603.  https://doi.org/10.1126/science.288.5471.1602 CrossRefGoogle Scholar
  9. 9.
    Harlan, J.R. and Zohary, D., Distribution of wild wheats and barley, Science, 1966, vol. 153, no. 3740, pp. 1074—1080.  https://doi.org/10.1126/science.153.3740.1074 CrossRefGoogle Scholar
  10. 10.
    Kilian, B., Özkan, H., Kohl, J., et al., Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication, Mol. Gen. Genomics, 2006, vol. 276, pp. 230—241.  https://doi.org/10.1007/s00438-006-0136-6 CrossRefGoogle Scholar
  11. 11.
    Morrell, P.L. and Clegg, M.T., Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 9, pp. 3289—3294.CrossRefGoogle Scholar
  12. 12.
    Allaby, R.G., Barley domestication: the end of central dogma? Genome Biol., 2015, vol. 16, no. 117.  https://doi.org/10.1186/s13059-015-0743-9
  13. 13.
    Sozinov, A.A., Netsvetaev, V.P., Grigoryan, E.M., and Obraztsov, I.S., Mapping Hrd loci in barley (Hordeum vulgare L. emend. Vav. et Bach.), Genetica (Moscow), 1978, vol. 14, no. 9, pp. 1610—1619.Google Scholar
  14. 14.
    Pomortsev, A.A., Netsvetaev, V.P., Poperelya, F.A., and Sozinov, A.A., Identification of the sixth locus controlling the hordein synthesis in winter barley, Dokl. Vses. Akad. S-kh. Nauk imeni Lenina, 1983, no. 1, pp. 7—9.Google Scholar
  15. 15.
    Netsvetaev, V.P. and Sozinov, A.A., Location of a hordein G locus, Hrd G, on chromosome 5 of barley, Barley Genet. Newslett., 1984, vol. 14, pp. 4—6.Google Scholar
  16. 16.
    Pomortsev, A.A. and Lyalina, E.V., Otsenka sortovoi prinadlezhnosti i sortovoi chistoty semyan yachmenya metodom elektroforeticheskogo analiza zapasnykh belkov zerna (Assessment of Barley Seeds Cultivar Identity and Purity by Means of Electrophoretic Analysis of Storage Proteins), Laboratory Methodic Guide to the Practicum Belkovye markery dlya geneticheskoi pasportizatsii i uluchsheniya genomov rastenii khozyaistvenno tsennykh vidov (Protein Markers for Genetic Sertification and Improvement of Plant Genomes of Economically Valuable Species), Moscow: Tsifrovichok, 2011.Google Scholar
  17. 17.
    Dakir, El-H., Ruiz, M.-L., Garcia, P., and de la Vega, P., Genetic variability evaluation in Moroccan collection of barley, Hordeum vulgare L., by means of storage proteins and RAPDs, Genet. Resour. Crop Evol., 2002, vol. 49, pp. 619—631.  https://doi.org/10.1023/A:1021228730714
  18. 18.
    Pomortsev, A.A. and Lyalina, E.V., Allele diversity of hordein-coding locus Hrd A in Hordeum spontaneum C. Koch—a wild relative of cultivated barley from Israel (as a part of the Fertile Crescent), Tr. Prikl. Bot., Genet. Sel., 2009, vol. 166, pp. 450—457.Google Scholar
  19. 19.
    Pomortsev, A.A. and Lyalina, E.V., Allele diversity of hordein-coding loci Hrd A and Hrd B in cultivated (Hordeum vulgare L.) and wild (Hordeum spontaneum C. Koch) barley in Iran (as a part of the Fertile Crescent), Russ. J. Genet., 2016, vol. 52, no. 10, pp. 1034—1045.  https://doi.org/10.1134/S1022795416100094 CrossRefGoogle Scholar
  20. 20.
    Pomortsev, A.A., Boldyrev, S.V., and Lyalina, E.V., Allele diversity of hordein-coding loci Hrd A and Hrd B in cultivated (Hordeum vulgare L.) and wild (Hordeum spontaneum C. Koch) barley in Turkey (as a part of the Fertile Crescent), Russ. J. Genet., 2017, vol. 53, no. 4, pp. 455—464.  https://doi.org/10.1134/S1022795417030097 CrossRefGoogle Scholar
  21. 21.
    Sozinov, A.A. and Poperelya, F.A., Metodika vertikal’nogo diskovogo elektroforeza v krakhmal’nom gele i geneticheskii printsip klassifikatsii gliadinov (A Procedure of Vertical Disk Electrophoresis in Starch Gel and the Genetic Principle of Gliadin Classification), Odessa, 1978.Google Scholar
  22. 22.
    Pomortsev, A.A., Kalabushkin, B.A., and Terent’eva, I.A., Hordein polymorphism in barley varieties from North Africa, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1267—1278.CrossRefGoogle Scholar
  23. 23.
    Pomortsev, A.A., Hordein polymorphism in Ethiopian barley, Russ. J. Genet., 2001, vol. 37, no. 10, pp. 1150—1160.CrossRefGoogle Scholar
  24. 24.
    Pomortsev, A.A., Martynov, S.P., Kovaleva, O.N., and Lyalina, E.V., Polymorphism of hordein-coding loci in cultivated barley (Hordeum vulgare L.) in Afghanistan, Russ. J. Genet., 2010, vol. 46, no. 11, pp. 1327—1334.  https://doi.org/10.1134/S1022795410110086 CrossRefGoogle Scholar
  25. 25.
    Pomortsev, A.A. and Lyalina, E.V., Polymorphism of the cultivated barley (Hordeum vulgare L.) of South Arabia at hordein-coding loci, Russ. J. Genet., 2007, vol. 43, no. 5, pp. 536—543.  https://doi.org/10.1134/S1022795407050092 CrossRefGoogle Scholar
  26. 26.
    Pomortsev, A.A., Martynov, S.P., and Lyalina, E.V., Polymorphism of hordein-coding loci in Near Eastern local populations of cultivated barley (Hordeum vulgare L.), Russ. J. Genet., 2008, vol. 44, no. 6, pp. 709—721.  https://doi.org/10.1134/S1022795408060112 CrossRefGoogle Scholar
  27. 27.
    Pomortsev, A.A., Martynov, S.P., Kovaleva, O.N., and Lyalina, E.V., Polymorphism of hordein-coding loci in barley (Hordeum vulgare L.) populations of Iran and Central Asian countries, Russ. J. Genet., 2011, vol. 47, no. 11, pp. 1372—1390.  https://doi.org/10.1134/S1022795411110147 CrossRefGoogle Scholar
  28. 28.
    Pomortsev, A.A., Martynov, S.P., and Lyalina, E.V., Polymorphism of hordein-coding loci in barley (Hordeum vulgare L.) populations from the countries of Eastern Asia (China, Nepal, Pakistan, India), Russ. J. Genet., 2012, vol. 48, no. 8, pp. 792—807.  https://doi.org/10.1134/S1022795412050183 CrossRefGoogle Scholar
  29. 29.
    Pomortsev, A.A., Boldyrev, S.V., and Lyalina, E.V., Allele diversity of hordein-coding loci Hrd A and Hrd B in cultivated (Hordeum vulgare L.) and wild (Hordeum spontaneum C. Koch) barley from Syria (as a part of the Fertile Crescent), Russ. J. Genet., 2018, vol. 54, no. 11, pp. 1293—1301.CrossRefGoogle Scholar
  30. 30.
    Zohary, D. and Hopf, M., Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and Nile Valley, Oxford.: Clarendon, 1988.Google Scholar
  31. 31.
    Willcox, G., Archeobotanical evidence for the beginnings of agriculture in Southwest Asia, The Origins of Agriculture and Crop Domestication (Proc. Harlan Symp.), Aleppo, 1997, pp. 25—38.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. A. Pomortsev
    • 1
    Email author
  • S. V. Boldyrev
    • 1
  • E. V. Lyalina
    • 1
  1. 1.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations