Russian Journal of Genetics

, Volume 55, Issue 3, pp 388–392 | Cite as

Bioinformatic Analysis of the Sciatic Nerve Transcriptomes of Mice after 30-Day Spaceflight on Board the Bion-M1 Biosatellite

  • M. S. KuznetsovEmail author
  • P. N. Rezvyakov
  • A. N. Lisyukov
  • O. A. Gusev
  • E. E. Nikolskiy
  • R. R. Islamov


Comparative bioinformatic analysis of sciatic nerve transcriptomes of C57BL/6J mice was carried out. Animals were divided into three groups: Flight, 30-day spaceflight; Recovery, 30-day spaceflight with subsequent 7-day readaptation; and Control. A significant pool of genes with an absolute difference in expression of more than 32 times compared to the control group was revealed in mice after the 30-day spaceflight (Flight and Recovery groups). Comparative analysis of the Flight and Recovery groups of murine transcriptomes did not reveal any significant differences in gene expression. In animals after spaceflight on board the biosatellite, using the KEGG database (Kyoto Encyclopedia of Genes and Genomes), we identified genes related to the state of metabolic and signaling pathways involved in actin cytoskeleton regulation, regulation of potential-dependent calcium, sodium, and potassium channels, and myelination of nerve fibers.


Bion-M1 biosatellite murine sciatic nerve transcriptome hypogravitational motor syndrome 



We thank O.V. Tyapkina and K.A. Petrov for assistance in experiments.

This study was supported by the Russian Foundation for Basic Research grant no. 17-04-00385, the fundamental research program of the Presidium of the Russian Academy of Sciences “Basic Research for the Development of Biomedical Technologies,” and the subsidy allocated within the framework of state support of the Kazan (Volga Region) Federal University in order to increase its competitiveness among the world’s leading scientific and educational centers.


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

11177_2019_1089_MOESM1_ESM.xls (28 kb)
11177_2019_1089_MOESM2_ESM.xls (15 kb)
11177_2019_1089_MOESM3_ESM.xls (30 kb)
11177_2019_1089_MOESM4_ESM.xls (14 kb)
11177_2019_1089_MOESM5_ESM.xls (8 kb)
11177_2019_1089_MOESM6_ESM.xls (8 kb)


  1. 1.
    Shenkman, B.S., From slow to fast: hypogravity-induced remodeling of muscle fiber myosin phenotype, Acta Nat., 20168, no. 4, pp. 47—59.Google Scholar
  2. 2.
    Grigoriev, A.I., Koslovskaya, I.B., and Shenkman, B.S., Role of support afferentation in organization of the tonic muscle system, Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90, no. 5, pp. 508—521.Google Scholar
  3. 3.
    Delbono, O., Neural control of aging skeletal muscle, Aging Cell, 2003, vol. 2, no. 1, pp. 21—29.CrossRefGoogle Scholar
  4. 4.
    Sakuma, K. and Yamaguchi, A., The recent understanding of the neurotrophin’s role in skeletal muscle adaptation, J. Biomed. Biotechnol., 2011, vol. 2011, pp. 1—12. CrossRefGoogle Scholar
  5. 5.
    Chevrel, G., Hohlfeld, R., and Sendtner, M., The role of neurotrophins in muscle under physiological and pathological conditions, Muscle Nerve, 2006, vol. 33, no. 4, pp. 462—476. CrossRefGoogle Scholar
  6. 6.
    Baguma-Nibasheka, M., Fracassi, A., Costain, W., et al., Role of skeletal muscle in motor neuron development, Histol. Histopathol., 2016, vol. 31, no. 7, pp. 699—719. Google Scholar
  7. 7.
    Spaulding, E.L. and Burgess, R.W., Accumulating evidence for axonal translation in neuronal homeostasis, Front. Neurosci., 2017, vol. 11, pp. 312—319. CrossRefGoogle Scholar
  8. 8.
    Costa, C.J. and Willis, D.E., To the end of the line: axonal mRNA transport and local translation in health and neurodegenerative disease, Dev. Neurobiol., 2017, vol. 78, no. 3, pp. 209—220. CrossRefGoogle Scholar
  9. 9.
    Islamov, R.R., Gusev, O.A., Tanabe, A., et al., Full-genome study of gene expression in lumbar spinal cord of mice after 30-day space flight on Bion-M1 biosatellite, Acta Astronaut., 2016, vol. 122, pp. 231—236. CrossRefGoogle Scholar
  10. 10.
    Andreev-Andrievskiy, A., Popova, A., Boyle, R., et al., Mice in Bion-M 1 space mission: training and selection, PLoS One, 2014, vol. 9, no. 8. E104830. CrossRefGoogle Scholar
  11. 11.
    Aziz, R., Verma, C.K., and Srivastava, N., Dimension reduction methods for microarray data: a review, AIMS Bioeng., 2017, no. 4, pp. 179—197.
  12. 12.
    Saeys, Y., Inza, I., and Larranaga, P., A review of feature selection techniques in bioinformatics, Bioinformatics, 2007, vol. 23, no. 19, pp. 2507—2517. CrossRefGoogle Scholar
  13. 13.
    Luo, W., Friedman, M., Shedden, K., et al., GAGE: Generally Applicable Gene Set Enrichment for Pathways Analysis, BMC Bioinf., 2009, vol. 10, no. 1, pp. 161—178. CrossRefGoogle Scholar
  14. 14.
    Bradke, F. and Dotti, C.G., Neuronal polarity: vectorial cytoplasmic flow precedes axon formation, Neuron, 1997, vol. 19, no. 6, pp. 1175—1186.CrossRefGoogle Scholar
  15. 15.
    Terenzio, M., Schiavo, G., and Fainzilber, M., Compartmentalized signaling in neurons: from cell biology to neuroscience, Neuron, 2017, vol. 96, no. 3, pp. 667—679. CrossRefGoogle Scholar
  16. 16.
    Piper, M. and Holt, C., RNA translation in axons, Annu. Rev. Cell Dev. Biol., 2004, vol. 20, no. 1, pp. 505—523. CrossRefGoogle Scholar
  17. 17.
    Alvarez, J., Giuditta, A., and Koenig, E., Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype: with a critique of slow transport theory, Prog. Neurobiol., 2000, vol. 62, no. 1, pp. 1—62. CrossRefGoogle Scholar
  18. 18.
    Glock, C., Heumüller, M., Schuman, E.M., mRNA transport and local translation in neurons, Curr. Opin. Neurobiol., 2017, vol. 45, pp. 169—177. CrossRefGoogle Scholar
  19. 19.
    Lee, B.H., Bae, S.W., Shim, J.J., et al., Imaging single-mRNA localization and translation in live neurons, Mol. Cells, 2016, vol. 39, no. 12, pp. 841—846. CrossRefGoogle Scholar
  20. 20.
    Van Driesche, S. and Martin, K., New frontiers in RNA transport and local translation in neurons, Dev. Neurobiol., 2018, vol. 78, no. 13, pp. 331—339. CrossRefGoogle Scholar
  21. 21.
    Kuznetsov, M.S., Rezvyakov, P.N., Lisyukov, A.N., et al., Transcriptomic profile of the mice sciatic nerve after 30-day space flight on the Bion-M1 biosatellite and subsequent 7-day readaptation on Earth, Aviakosm. Ekol. Med., 2017, vol. 51, no. 7, pp. 85—87. Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. S. Kuznetsov
    • 1
    Email author
  • P. N. Rezvyakov
    • 2
  • A. N. Lisyukov
    • 1
  • O. A. Gusev
    • 3
    • 4
  • E. E. Nikolskiy
    • 5
    • 6
    • 7
  • R. R. Islamov
    • 1
    • 7
  1. 1.Department of Medical Biology and Genetics, Kazan State Medical UniversityKazanRussia
  2. 2.Department of Normal Anatomy, Kazan State Medical UniversityKazanRussia
  3. 3.OpenLab Extreme Biology, Kazan (Volga Region) Federal UniversityKazanRussia
  4. 4.Translational Genomics UnitYokohama CityJapan
  5. 5.Department of Medical and Biological Physics, Kazan State Medical UniversityKazanRussia
  6. 6.OpenLab Neuropharmacology, Kazan (Volga Region) Federal UniversityKazanRussia
  7. 7.Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of SciencesKazanRussia

Personalised recommendations