Advertisement

Russian Journal of Genetics

, Volume 55, Issue 3, pp 360–367 | Cite as

Genetic Diversity of atp6 and cox3 Gene in Wild Drosophila melanogaster

  • M. Chen
  • H. Yin
  • H. Gu
  • L. Zhang
  • Zh. X. Xu
  • T. Ma
  • D. LiEmail author
ANIMAL GENETICS

Abstract

Mitochondria are the energy factory in cells, and more than 95% of the energy in cells is produced by the mitochondrial oxidative phosphorylation (OXPHOS). Therefore, mitochondria likely plays an important role in the process of high-altitude adaptation. Wild Drosophila melanogaster population structure provides a good precondition to detect positive selection on mitochondrial genes related to environmental or climatic variation, specifically hypoxia and high altitudes. In this paper, we sequenced atp6 (ATPase synthase 6) from 27 individuals and cox3 (cytochrome c oxidase III) from 26 individuals of wild Drosophila melanogaster. The percent G+C content of atp6 and cox3 genes has a value of 24 and 29.3%, respectively, exhibiting an extreme bias in base composition. 5 single nucleotide polymorphisms (SNPs) were detected and 2 nonsynonymous substitutions (m.555T > A and m.577A > G) were detected in atp6, only one SNP (m.126C > T) was found from highland Drosophila melanogaster. 6 SNPs were detected in cox3, we found 2 nonsynonymous substitutions (m.745G > A and m.427G > A) of only one highland strain from Yun Nan province. Substitution rates and dN/dS ratios were relatively high for cox3 (ω = 0.34851) compared to atp6 (ω = 0.07329), both of them inferring is purifying selection by using PAML. Only one amino acid site 255I (p < 0.01) of the cox3 gene was found in one fly from low altitude Drosophila sample, which was generated by SNPs (m.763A > G and m.764T > C). From these analyses we conclude that selection may not have played a role in shaping Drosophila melanogaster regional mtDNA variation, the changes in selection is very likely due to some environmental stressors other than hypoxia and high altitudes, and more broadly, our results add to an emerging body of research in Drosophila.

Keywords:

Drosophila melanogaster cox3 gene atp6 gene natural selection mtDNA 

Notes

ACKNOWLEDGMENTS

This study was supported by National Natural Science Foundation of China (NSFC31402063); the programme from Sichuan Agricultural University (02920400) and Sichuan Provincial Department of Science and Technology Programme (2015JQO023).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Lewis, D.L., Farr, C.L. and Kaguni, L.S., Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons, Insect Mol. Biol., 1995, vol. 4, no. 4, pp. 263—278.CrossRefGoogle Scholar
  2. 2.
    Elson, J.L., Turnbull, D.M. and Howell, N., Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection, Am. J. Hum. Genet., 2004, vol. 74, no. 74, pp. 229—238.CrossRefGoogle Scholar
  3. 3.
    Brown, W.M., George, M. and Wilson, A.C., Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, no. 4, pp. 1967—1971.CrossRefGoogle Scholar
  4. 4.
    Zhou, D., Xue, J., Lai, J.C.K., et al., Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch, PLoS Genet., 2008, vol. 4, no. 10. e1000221CrossRefGoogle Scholar
  5. 5.
    Pearson, E.S., The empirical Bayes approach: estimating posterior quantiles, Biometrika, 1967, vol. 54, nos. 3–4, pp. 672—675.CrossRefGoogle Scholar
  6. 6.
    Abramovich, F., Besbeas, P. and Sapatinas, T., Empirical Bayes Approach to Block Wavelet Function Estimation, Elsevier, 2002, pp. 435—451.CrossRefGoogle Scholar
  7. 7.
    James, J.E., Piganeau, G. and Eyrewalker, A., The rate of adaptive evolution in animal mitochondria, Mol. Ecol., 2016, vol. 25, no. 1, pp. 67—78.CrossRefGoogle Scholar
  8. 8.
    Stewart, J.B., Freyer, C., Elson, J.L., et al., Strong purifying selection in transmission of mammalian mitochondrial DNA, PLoS Biol., 2008, vol. 6, no. 1, p. 10.CrossRefGoogle Scholar
  9. 9.
    Mishmar, D., Ruiz-Pesini, E., Golik, P., et al., Natural selection shaped regional mtDNA variation in humans, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 1, pp. 171—176.CrossRefGoogle Scholar
  10. 10.
    Ruizpesini, E., Dan, M., Brandon, M., et al., Effects of purifying and adaptive selection on regional variation in human mtDNA, Science, 2004, vol. 303, no. 5655, p. 223.CrossRefGoogle Scholar
  11. 11.
    Zink, R.M., Natural selection on mitochondrial DNA in Parus and its relevance for phylogeographic studies, Proc. Biol. Sci., 2005, vol. 272, no. 1558, pp. 71—78.CrossRefGoogle Scholar
  12. 12.
    Kivisild, T., Shen, P., Wall, D.P., et al., The role of selection in the evolution of human mitochondrial genomes, Genetics, 2006, vol. 172, no. 1, p. 373.CrossRefGoogle Scholar
  13. 13.
    Ingman, M. and Gyllensten, U., Rate variation between mitochondrial domains and adaptive evolution in humans, Hum. Mol. Genet., 2007, vol. 16, no. 19, p. 2281.CrossRefGoogle Scholar
  14. 14.
    Balloux, F., Handley, L.J.L., Jombart, T., et al., Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation, Proc. Biol. Sci., 2009, vol. 276, no. 1672, p. 3447.Google Scholar
  15. 15.
    Meloferreira, J., Vilela, J., Fonseca, M.M., et al., The elusive nature of adaptive mitochondrial DNA evolution of an Arctic Lineage prone to frequent introgression, Genome Biol. Evol., 2014, vol. 6, no. 4, p. 886.CrossRefGoogle Scholar
  16. 16.
    Morales, H.E., Pavlova, A., Joseph, L., et al., Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance, Mol. Ecol., 2015, vol. 24, no. 11, p. 2820.CrossRefGoogle Scholar
  17. 17.
    Jacobsen, M.W., Fonseca, R.R.D., Bernatchez, L., et al., Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.), Mol. Phylogenet. Evol., 2015, vol. 95, p. 161.CrossRefGoogle Scholar
  18. 18.
    Gu, M., Dong, X., Shi, L., et al., Differences in mtDNA whole sequence between Tibetan and Han populations suggesting adaptive selection to high altitude, Gene, 2012, vol. 496, no. 1, pp. 37—44.CrossRefGoogle Scholar
  19. 19.
    Brunori, M., Antonini, G., Malatesta, F., et al., Cytochrome-c oxidase: subunit structure and proton pumping, Eur. J. Biochem., 1987, vol. 169, no. 1, pp. 1—8.CrossRefGoogle Scholar
  20. 20.
    Sun, J., Zhong, H., Chen, S.Y., et al., Association between MT-CO3 haplotypes and high-altitude adaptation in Tibetan chicken, Gene, 2013, vol. 529, no. 1, pp. 131—137.CrossRefGoogle Scholar
  21. 21.
    Miller, S.A., Dykes, D.D. and Polesky, H.F., A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res., 1988, vol. 16, no. 3, p. 1215.CrossRefGoogle Scholar
  22. 22.
    Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, p. 2725.CrossRefGoogle Scholar
  23. 23.
    Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, no. 11, pp. 1451—1452.CrossRefGoogle Scholar
  24. 24.
    Bandelt, H.J., Forster, P. and Rohl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48.CrossRefGoogle Scholar
  25. 25.
    Yang, Z., Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A, J. Mol. Evol., 2000, vol. 51, no. 5, pp. 423—432.CrossRefGoogle Scholar
  26. 26.
    Yang, Z., PAML 4: Phylogenetic Analysis by Maximum Likelihood, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1586—1591.CrossRefGoogle Scholar
  27. 27.
    Anisimova, M., Bielawski, J.P. and Yang, Z., Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution, Mol. Biol. Evol., 2001, vol. 18, no. 8, pp. 1585—1592.CrossRefGoogle Scholar
  28. 28.
    Nielsen, R. and Yang, Z., Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene, Acta Agric. Jiangxi, 1998, vol. 148, no. 3, pp. 929—936.Google Scholar
  29. 29.
    Yang, Z., Nielsen, R., Fau-Goldman, N., Goldman, N., et al., Codon-substitution models for heterogeneous selection pressure at amino acid sites. no. 0016-6731 (Print).Google Scholar
  30. 30.
    Anisimova, M., Bielawski, J.P. and Yang, Z., Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution, Mol. Biol. Evol., 2001, vol. 18, no. 8, pp. 1585—1592.CrossRefGoogle Scholar
  31. 31.
    Yang, Z. and Dos, R.M., Statistical properties of the branch-site test of positive selection, Mol. Biol. Evol., 2011, vol. 28, no. 3, pp. 1217—1228.CrossRefGoogle Scholar
  32. 32.
    Pond, S.L.K., Frost, S.D.W. and Muse, S.V., HyPhy: hypothesis testing using phylogenies, Bioinformatics, 2005, vol. 21, no. 5, pp. 676—679.CrossRefGoogle Scholar
  33. 33.
    Pond, S.L.K. and Frost, S.D.W., Datamonkey: rapid detection of selective pressure on individual sites of codon alignments, Bioinformatics, 2005, vol. 21, no. 10, p. 2531.CrossRefGoogle Scholar
  34. 34.
    Shen, Y.Y., Liang, L., Zhu, Z.H., et al., Adaptive evolution of energy metabolism genes and the origin of flight in bats, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 19, pp. 8666—8671.CrossRefGoogle Scholar
  35. 35.
    Zeng, K., Fu, Y.X., Shi, S., et al., Statistical tests for detecting positive selection by utilizing high-frequency variants, Genetics, 2006, vol. 174, no. 3, pp. 1431—1439.CrossRefGoogle Scholar
  36. 36.
    Wolstenholme, D.R. and Clary, D.O., Sequence Evolution of Drosophila Mitochondrial DNA, Springer-Verlag, 1983, pp. 725—744.Google Scholar
  37. 37.
    Gillespie, J.H., Is the population size of a species relevant to its evolution, Evolution, 2001, vol. 55, no. 11, pp. 2161—2169.CrossRefGoogle Scholar
  38. 38.
    Meiklejohn, C.D. and Al, E., Positive and negative selection on the mitochondrial genome, Trends Genet., 2007, vol. 23, no. 6, pp. 259—263.CrossRefGoogle Scholar
  39. 39.
    Gillespie, J.H., The role of population size in molecular evolution, Theor. Pop. Biol., 1999, vol. 55, no. 2, pp. 145—156.CrossRefGoogle Scholar
  40. 40.
    Kimura, M. and Ohta, T., Protein polymorphism as a phase of molecular evolution, Nature, 1971, vol. 229, no. 5285, pp. 467—469.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. Chen
    • 1
  • H. Yin
    • 1
  • H. Gu
    • 1
  • L. Zhang
    • 1
  • Zh. X. Xu
    • 1
  • T. Ma
    • 1
  • D. Li
    • 1
    Email author
  1. 1.Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina

Personalised recommendations