Advertisement

Russian Journal of Genetics

, Volume 55, Issue 2, pp 154–162 | Cite as

Functions of Insulators in the Context of Modern Whole-Genome Investigations

  • N. E. Vorobyeva
  • M. Yu. MazinaEmail author
REVIEWS AND THEORETICAL ARTICLES
  • 2 Downloads

Abstract

Insulators are usually defined as DNA elements with the property to defend the gene from the influence of the other regulatory elements: enhancer-blocking insulators prevent activation of the gene promoter by the enhancer, when located in between them; barrier insulators remove the so-called position-effect variegation, preventing the spread of heterochromatin. In recent years, applications of the whole-genome methods of analysis led to the accumulation of data on the function of insulator elements that go beyond the framework of canonical definitions. This review summarizes the most up-to-date data on the canonical function of insulators in the organization of chromatin architecture and gene transcription and also considers their noncanonical functions supplementing the generally accepted concepts of the role of insulators in the regulation of the genome function.

Keywords:

insulator TAD transcription replication stress response 

Notes

ACKNOWLEDGMENTS

This work was supported by the grant of the Russian Science Foundation no. 17-74-10211.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Udvardy, A., Maine, E., and Schedl, P., The 87A7 chromomere: identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains, J. Mol. Biol., 1985, vol. 185, no. 2, pp. 341—358.CrossRefGoogle Scholar
  2. 2.
    Holdridge, C. and Dorsett, D., Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster, Mol. Cell Biol., 1991, vol. 11, no. 4, pp. 1894—1900.CrossRefGoogle Scholar
  3. 3.
    Geyer, P.K. and Corces, V.G., DNA position-specific repression of transcription by a Drosophila zinc finger protein, Genes Dev., 1992, vol. 6, no. 10, pp. 1865—1873.CrossRefGoogle Scholar
  4. 4.
    Capelson, M. and Corces, V.G., The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator, Mol. Cell, 2005, vol. 20, no. 1, pp. 105—116.CrossRefGoogle Scholar
  5. 5.
    Gerasimova, T.I. and Corces, V.G., Polycomb and trithorax group proteins mediate the function of a chromatin insulator, Cell, 1998, vol. 92, no. 4, pp. 511—521.CrossRefGoogle Scholar
  6. 6.
    Gerasimova, T.I., Byrd, K., and Corces, V.G., A chromatin insulator determines the nuclear localization of DNA, Mol. Cell, 2000, vol. 6, no. 5, pp. 1025—1035.CrossRefGoogle Scholar
  7. 7.
    Kellum, R. and Schedl, P., A group of scs elements function as domain boundaries in an enhancer-blocking assay, Mol. Cell Biol., 1992, vol. 12, pp. 2424—2431.CrossRefGoogle Scholar
  8. 8.
    Gaszner, M., Vazquez, J., and Schedl, P., The Zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer—promoter interaction, Genes Dev., 1999, vol. 13, no. 16, pp. 2098—2107.CrossRefGoogle Scholar
  9. 9.
    Zhao, K., Hart, C.M., and Laemmli, U.K., Visualization of chromosomal domains with boundary element-associated factor BEAF-32, Cell, 1995, vol. 81, pp. 879—889.CrossRefGoogle Scholar
  10. 10.
    Blanton, J., Gaszner, M., and Schedl, P., Protein:protein interactions and the pairing of boundary elements in vivo, Genes Dev., 2003, vol. 17, no. 5, pp. 664—675.CrossRefGoogle Scholar
  11. 11.
    Yusufzai, T.M., Tagami, H., Nakatani, Y., and Felsenfeld, G., CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species, Mol. Cell, 2004, vol. 13, no. 2, pp. 291—298.CrossRefGoogle Scholar
  12. 12.
    Kyrchanova, O., Ivlieva, T., Toshchakov, S., et al., Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process, Nucleic Acids Res., 2011, vol. 39, no. 8, pp. 3042—3052.  https://doi.org/10.1093/nar/gkq1248 CrossRefGoogle Scholar
  13. 13.
    Splinter, E., Heath, H., Kooren, J., et al., CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus, Genes Dev., 2006, vol. 20, no. 17. P. 2349—2354.  https://doi.org/10.1101/gad.399506 CrossRefGoogle Scholar
  14. 14.
    Majumder, P. and Cai, H.N., The functional analysis of insulator interactions in the Drosophila embryo, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 9, pp. 5223—5228.  https://doi.org/10.1073/pnas.0830190100 CrossRefGoogle Scholar
  15. 15.
    Rodin, S.A. and Georgiev, P.G., Study of the properties of the Fab-7 insulator in Drosophila melanogaster, Dokl. Biochem. Biophys., 2005, vol. 404, pp. 332—335.CrossRefGoogle Scholar
  16. 16.
    Kyrchanova, O., Chetverina, D., and Maksimenko, O., Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements, Nucleic Acids Res., 2008, vol. 36, no. 22, pp. 7019—7028.  https://doi.org/10.1093/nar/gkn781 CrossRefGoogle Scholar
  17. 17.
    Bonchuk, A., Denisov, S., Georgiev, P., and Maksimenko, O., Drosophila BTB/POZ domains of “ttk group” can form multimers and selectively interact with each other, J. Mol. Biol., 2011, vol. 412, no. 3, pp. 423—436.  https://doi.org/10.1016/j.jmb.2011.07.052 CrossRefGoogle Scholar
  18. 18.
    Bonchuk, A., Maksimenko, O., Kyrchanova, O., et al., Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster, BMC Biol., 2015, vol. 13, p. 63.  https://doi.org/10.1186/s12915-015-0168-7 CrossRefGoogle Scholar
  19. 19.
    Zolotarev, N.A., Maksimenko, O.G., Georgiev, P.G., and Bonchuk, A.N., ZAD-domain is essential for nuclear localization of insulator proteins in Drosophila melanogaster, Acta Nat., 2016, vol. 8, no. 3, pp. 97—102.Google Scholar
  20. 20.
    Zolotarev, N., Fedotova, A., Kyrchanova, O., et al., Architectural proteins Pita, Zw5, and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila, Nucleic Acids Res., 2016, vol. 44, no. 15, pp. 7228—7241.  https://doi.org/10.1093/nar/gkw371 Google Scholar
  21. 21.
    Dixon, J.R., Selvaraj, S., Yue, F., et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 2012, vol. 485, no. 7398, pp. 376—380.  https://doi.org/10.1038/nature11082 CrossRefGoogle Scholar
  22. 22.
    Sexton, T., Yaffe, E., Kenigsberg, E., et al., Three-dimensional folding and functional organization principles of the Drosophila genome, Cell, 2012, vol. 148, no. 3, pp. 458—472.  https://doi.org/10.1016/j.cell.2012.01.010 CrossRefGoogle Scholar
  23. 23.
    Wang, Q., Sun, Q., Czajkowsky, D.M., and Shao, Z. Sub-kb Hi-C in D. melanogaster reveals conserved characteristics of TADs between insect and mammalian cells, Nat. Commun., 2018, vol. 9, no. 1, p. 188.  https://doi.org/10.1038/s41467-017-02526-9 CrossRefGoogle Scholar
  24. 24.
    Pope, B.D., Ryba, T., Dileep, V., et al., Topologically associating domains are stable units of replication-timing regulation, Nature, 2014, vol. 515, no. 7527, pp. 402—405.  https://doi.org/10.1038/nature13986 CrossRefGoogle Scholar
  25. 25.
    Nora, E.P., Lajoie, B.R., Schulz, E.G., et al., Spatial partitioning of the regulatory landscape of the X-inactivation centre, Nature, 2012, vol. 485, no. 7398, pp. 381—385.  https://doi.org/10.1038/nature11049 CrossRefGoogle Scholar
  26. 26.
    Lupiáñez, D.G., Kraft, K., Heinrich, V., et al., Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions, Cell, 2015, vol. 161, no. 5, pp. 1012—1025.  https://doi.org/10.1016/j.cell.2015.04.004 CrossRefGoogle Scholar
  27. 27.
    Narendra, V., Rocha, P.P., An, D., et al., CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation, Science, 2015, vol. 347, no. 6225, pp. 1017—1021.  https://doi.org/10.1126/science.1262088 CrossRefGoogle Scholar
  28. 28.
    Parelho, V., Hadjur, S., Spivakov, M., et al., Cohesins functionally associate with CTCF on mammalian chromosome arms, Cell, 2008, vol. 132, no. 3, pp. 422—433.  https://doi.org/10.1016/j.cell.2008.01.011 CrossRefGoogle Scholar
  29. 29.
    Wendt, K.S., Yoshida, K., Itoh, T., et al., Cohesin mediates transcriptional insulation by CCCTC-binding factor, Nature, 2008, vol. 451, no. 7180, pp. 796—801.  https://doi.org/10.1038/nature06634 CrossRefGoogle Scholar
  30. 30.
    Zuin, J., Dixon, J.R., van der Reijden, M.I., et al., Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 3, pp. 996—1001.  https://doi.org/10.1073/pnas.1317788111 CrossRefGoogle Scholar
  31. 31.
    Rao, S.S., Huntley, M.H., Durand, N.C., et al., A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 2014, vol. 159, no. 7, pp. 1665—1680.  https://doi.org/10.1016/j.cell.2014.11.021 CrossRefGoogle Scholar
  32. 32.
    Sanborn, A.L., Rao, S.S., Huang, S.C., et al., Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 47, pp. 6456—6465.  https://doi.org/10.1073/pnas.1518552112 CrossRefGoogle Scholar
  33. 33.
    Tang, Z., Luo, O.J., Li, X., et al., CTCF-Mediated human 3D genome architecture reveals chromatin topology for transcription, Cell, 2015, vol. 163, no. 7, pp. 1611—1627.  https://doi.org/10.1016/j.cell.2015.11.024 CrossRefGoogle Scholar
  34. 34.
    Vietri Rudan, M., Barrington, C., Henderson, S., et al., Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture, Cell Rep., 2015, vol. 10, no. 8, pp. 1297—1309.  https://doi.org/10.1016/j.celrep.2015.02.004 CrossRefGoogle Scholar
  35. 35.
    Gómez-Marín, C., Tena, J.J., Acemel, R.D., et al., Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 24, pp. 7542—7547.  https://doi.org/10.1073/pnas.1505463112 CrossRefGoogle Scholar
  36. 36.
    Hou, C., Li, L., Qin, Z.S., and Corces, V.G., Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains, Mol. Cell, 2012, vol. 48, no. 3, pp. 471—784.  https://doi.org/10.1016/j.molcel.2012.08.031 CrossRefGoogle Scholar
  37. 37.
    Ramírez, F., Bhardwaj, V., Arrigoni, L., et al., High-resolution TADs reveal DNA sequences underlying genome organization in flies, Nat. Commun., 2018, vol. 9, no. 1, p. 189.  https://doi.org/10.1038/s41467-017-02525-w CrossRefGoogle Scholar
  38. 38.
    Rowley, M.J., Nichols, M.H., Lyu, X., et al., Evolutionarily conserved principles predict 3D chromatin organization, Mol. Cell, 2017, vol. 67, no. 5, pp. 837—852.  https://doi.org/10.1016/j.molcel.2017.07.022 CrossRefGoogle Scholar
  39. 39.
    Ulianov, S.V., Khrameeva, E.E., Gavrilov, A.A., et al., Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains, Genome Res., 2016, vol. 26, no. 1, pp. 70—84.  https://doi.org/10.1101/gr.196006.115 CrossRefGoogle Scholar
  40. 40.
    Filion, G.J., van Bemmel, J.G., Braunschweig, U., et al., Systematic protein location mapping reveals five principal chromatin types in Drosophila cells, Cell, 2010, vol. 143, no. 2, pp. 212—224.  https://doi.org/10.1016/j.cell.2010.09.009 CrossRefGoogle Scholar
  41. 41.
    Van Bortle, K., Nichols, M.H., Li, L., et al., Insulator function and topological domain border strength scale with architectural protein occupancy, Genome Biol., 2014, vol. 15, no. 6, p. 82.  https://doi.org/10.1186/gb-2014-15-5-r82 CrossRefGoogle Scholar
  42. 42.
    Phillips-Cremins, J.E., Sauria, M.E., Sanyal, A., et al., Architectural protein subclasses shape 3D organization of genomes during lineage commitment, Cell, 2013, vol. 153, no. 6, pp. 1281—1295.  https://doi.org/10.1016/j.cell.2013.04.053 CrossRefGoogle Scholar
  43. 43.
    Junier, I., Dale, R.K., Hou, C., et al., CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus, Nucleic Acids Res., 2012, vol. 40, no. 16, pp. 7718—7727.  https://doi.org/10.1093/nar/gks536 CrossRefGoogle Scholar
  44. 44.
    Hou, C., Dale, R., and Dean, A., Cell type specificity of chromatin organization mediated by CTCF and cohesion, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 8, pp. 3651—3656.  https://doi.org/10.1073/pnas.0912087107 CrossRefGoogle Scholar
  45. 45.
    Tang, Z., Luo, O.J., Li, X., et al., CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription, Cell, 2015, vol. 163, no. 7, pp. 1611—1627.  https://doi.org/10.1016/j.cell.2015.11.024 CrossRefGoogle Scholar
  46. 46.
    Muravyova, E., Golovnin, A., Gracheva, E., et al., Loss of insulator activity by paired Su(Hw) chromatin insulators, Science, 2001, vol. 291, no. 5503, pp. 495—498.  https://doi.org/10.1126/science.291.5503.495 CrossRefGoogle Scholar
  47. 47.
    Cai, H.N. and Shen, P., Effects of cis arrangement of chromatin insulators on enhancer-blocking activity, Science, 2001, vol. 291, no. 5503, pp. 493—495.  https://doi.org/10.1126/science.291.5503.493 CrossRefGoogle Scholar
  48. 48.
    Beishline, K., Vladimirova, O., Tutton, S., et al., CTCF driven TERRA transcription facilitates completion of telomere DNA replication, Nat. Commun., 2017, vol. 8, no. 1, p. 2114.  https://doi.org/10.1038/s41467-017-02212-w CrossRefGoogle Scholar
  49. 49.
    Engel, N., Thorvaldsen, J.L., and Bartolomei, M.S., CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus, Hum. Mol. Genet., 2006, vol. 15, no. 19, pp. 2945—2954.  https://doi.org/10.1093/hmg/ddl237 CrossRefGoogle Scholar
  50. 50.
    Zolotarev, N., Maksimenko, O., Kyrchanova, O., et al., Opbp is a new architectural/insulator protein required for ribosomal gene expression, Nucleic Acids Res., 2017, vol. 45, no. 21, pp. 12285—12300.  https://doi.org/10.1093/nar/gkx840 CrossRefGoogle Scholar
  51. 51.
    Soshnev, A.A., Baxley, R.M., Manak, J.R., et al., The insulator protein suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary, Development, 2013, vol. 140, no. 17, pp. 3613—3623.  https://doi.org/10.1242/dev.094953 CrossRefGoogle Scholar
  52. 52.
    Sigrist, C.J. and Pirrotta, V., Chromatin insulator elements block the silencing of a target gene by the Drosophila polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes, Genetics, 1997, vol. 147, no. 1, pp. 209—221.Google Scholar
  53. 53.
    Comet, I., Savitskaya, E., Schuettengruber, B., et al., PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter, Dev. Cell., 2006, vol. 11, no. 1, pp. 117—124  https://doi.org/10.1016/j.devcel.2006.05.009 CrossRefGoogle Scholar
  54. 54.
    Li, H.B., Ohno, K., Gui, H., and Pirrotta, V., Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies, PLoS Genet., 2013, vol. 9, no. 4. e1003436.  https://doi.org/10.1371/journal.pgen.1003436 CrossRefGoogle Scholar
  55. 55.
    Li, L., Lyu, X., Hou, C., et al., Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing, Mol. Cell, 2015, vol. 58, no. 2, pp. 216—231.  https://doi.org/10.1016/j.molcel.2015.02.023 CrossRefGoogle Scholar
  56. 56.
    Schoborg, T., Rickels, R., Barrios, J., and Labrador, M., Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death, J. Cell Biol., 2013, vol. 202, no. 2, pp. 261—276.  https://doi.org/10.1083/jcb.201304181 CrossRefGoogle Scholar
  57. 57.
    Golovnin, A., Melnikova, L., Volkov, I., et al., “Insulator bodies” are aggregates of proteins but not of insulators, EMBO Rep., 2008, vol. 9, no. 5, pp. 440—445.  https://doi.org/10.1038/embor.2008.32 CrossRefGoogle Scholar
  58. 58.
    Lake, R.J., Boetefuer, E.L., Won, K.J., and Fan, H.Y., The CSB chromatin remodeler and CTCF architectural protein cooperate in response to oxidative stress, Nucleic Acids Res., 2016, vol. 44, no. 5, pp. 2125—2135.  https://doi.org/10.1093/nar/gkv1219 CrossRefGoogle Scholar
  59. 59.
    Peña-Hernández, R., Marques, M., Hilmi, K., et al., Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 7, pp. 677—686.  https://doi.org/10.1073/pnas.1416674112 CrossRefGoogle Scholar
  60. 60.
    Han, D., Chen, Q., Shi, J., et al., CTCF participates in DNA damage response via poly(ADP-ribosyl)ation, Sci. Rep., 2017, vol. 7, p. 43530.  https://doi.org/10.1038/srep43530 CrossRefGoogle Scholar
  61. 61.
    Natale, F., Rapp, A., Yu, W., et al., Identification of the elementary structural units of the DNA damage response, Nat. Commun., 2017, vol. 8, p. 15760.  https://doi.org/10.1038/ncomms15760 CrossRefGoogle Scholar
  62. 62.
    Lang, F., Li, X., Zheng, W., et al., CTCF prevents genomic instability by promoting homologous recombination-directed DNA double-strand break repair, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 41, pp. 10912—10917.  https://doi.org/10.1073/pnas.1704076114 CrossRefGoogle Scholar
  63. 63.
    Hilmi, K., Jangal, M., Marques, M., et al., CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair, Sci. Adv., 2017, vol. 3, no. 5. e1601898.  https://doi.org/10.1126/sciadv.1601898 CrossRefGoogle Scholar
  64. 64.
    Docquier, F., Kita, G.X., Farrar, D., et al., Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation, Clin. Cancer Res., 2009, vol. 15, no. 18, pp. 5762—5871.  https://doi.org/10.1158/1078-0432.CCR-09-0329 CrossRefGoogle Scholar
  65. 65.
    MacAlpine, H.K., Gordân, R., Powell, S.K., et al., Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading, Genome Res., 2010, vol. 20, no. 2, pp. 201—211.  https://doi.org/10.1101/gr.097873.109 CrossRefGoogle Scholar
  66. 66.
    Kim, J.C. and Orr-Weaver, T.L., Analysis of a Drosophila amplicon in follicle cells highlights the diversity of metazoan replication origins, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 40, pp. 16681—16686.  https://doi.org/10.1073/pnas.1114209108 CrossRefGoogle Scholar
  67. 67.
    MacAlpine, D.M., Rodríguez, H.K., and Bell, S.P., Coordination of replication and transcription along a Drosophila chromosome, Genes Dev., 2004, vol. 18, no. 24, pp. 3094—3105.  https://doi.org/10.1101/gad.1246404 CrossRefGoogle Scholar
  68. 68.
    Balasov, M., Huijbregts, R.P., and Chesnokov, I., Role of the Orc6 protein in origin recognition complex-dependent DNA binding and replication in Drosophila melanogaster, Mol. Cell Biol., 2007, vol. 27, no. 8, pp. 3143—3153.  https://doi.org/10.1128/MCB.02382-06 CrossRefGoogle Scholar
  69. 69.
    Deal, R.B., Henikoff, J.G., and Henikoff, S., Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones, Science, 2010, vol. 328, no. 5982, pp. 1161—1164.  https://doi.org/10.1126/science.1186777 CrossRefGoogle Scholar
  70. 70.
    Vorobyeva, N.E., Mazina, M.U., Golovnin, A.K., et al., Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome, Nucleic Acids Res., 2013, vol. 41, no. 11, pp. 5717—5730.  https://doi.org/10.1093/nar/gkt297 CrossRefGoogle Scholar
  71. 71.
    Mazina, M.Iu., Vorob’eva, N.E., and Krasnov, A.N., The ability of the Su(Hw) protein to create a platform for ORC binding does not depend on the type of surrounding chromatin, Tsitologiia, 2013, vol. 55, no. 4, pp. 218—224.Google Scholar
  72. 72.
    Krasnov, A.N., Vorob’eva, N.E., and Mazina, M.Yu., Insulator protein Su(Hw) is indispensable for amplification of part of Drosophila Amplicons in follicular cells (DAFCs) during early oogenesis, Dokl. Biochem. Biophys., 2018, vol. 479, no. 1, pp. 80—82.CrossRefGoogle Scholar
  73. 73.
    Kim, J.C., Nordman, J., Xie, F., et al., Integrative analysis of gene amplification in Drosophila follicle cells: parameters of origin activation and repression, Genes Dev., 2011, vol. 25, no. 13, pp. 1384—1398.  https://doi.org/10.1101/gad.2043111 CrossRefGoogle Scholar
  74. 74.
    Claycomb, J.M., MacAlpine, D.M., Evans, J.G., et al., Visualization of replication initiation and elongation in Drosophila, J. Cell Biol., 2002, vol. 159, no. 2, pp. 225—236.  https://doi.org/10.1083/jcb.200207046 CrossRefGoogle Scholar
  75. 75.
    Park, E.A., Macalpine, D.M., and Orr-Weaver, T.L., Drosophila follicle cell amplicons as models for metazoan DNA replication: a cyclinE mutant exhibits increased replication fork elongation, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 43, pp. 16739—16746.  https://doi.org/10.1073/pnas.0707804104 CrossRefGoogle Scholar
  76. 76.
    Adelman, K. and Lis, J.T., Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans, Nat. Rev. Genet., 2012, vol. 13, no. 10, pp. 720—731.  https://doi.org/10.1038/nrg3293 CrossRefGoogle Scholar
  77. 77.
    Egloff, S., Al-Rawaf, H., O’Reilly, D., and Murphy, S., Chromatin structure is implicated in “late” elongation checkpoints on the U2 snRNA and beta-actin genes, Mol. Cell Biol., 2009, vol. 29, no. 14, pp. 4002—4013.  https://doi.org/10.1128/MCB.00189-09 CrossRefGoogle Scholar
  78. 78.
    Paredes, S.H., Melgar, M.F., and Sethupathy, P., Promoter-proximal CCCTC-factor binding is associated with an increase in the transcriptional pausing index, Bioinformatics, 2013, vol. 29, no. 12, pp. 1485—1487.  https://doi.org/10.1093/bioinformatics/bts596 CrossRefGoogle Scholar
  79. 79.
    Laitem, C., Zaborowska, J., Tellier, M., et al., CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription, Transcription, 2015, vol. 6, no. 5, pp. 79—90.  https://doi.org/10.1080/21541264.2015.1095269 CrossRefGoogle Scholar
  80. 80.
    Shukla, S., Kavak, E., Gregory, M., et al., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing, Nature, 2011, vol. 479, no. 7371, pp. 74—79.  https://doi.org/10.1038/nature10442 CrossRefGoogle Scholar
  81. 81.
    Ruiz-Velasco, M., Kumar, M., Lai, M.C., et al., CTCF-mediated chromatin loops between promoter and gene body regulate alternative splicing across individuals, Cell Syst., 2017, vol. 5, no. 6, pp. 628—637.  https://doi.org/10.1016/j.cels.2017.10.018 CrossRefGoogle Scholar
  82. 82.
    Pascual-Garcia, P., Debo, B., Aleman, J.R., et al., Metazoan nuclear pores provide a scaffold for poised genes and mediate induced enhancer—promoter contacts, Mol. Cell, 2017, vol. 66, no. 1, pp. 63—76.  https://doi.org/10.1016/j.molcel.2017.02.020 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations