Russian Journal of Genetics

, Volume 55, Issue 2, pp 197–203 | Cite as

On the Issue of Larix × lubarskii Sukaczev Origin: Analysis of Polymorphism of Mitochondrial Genome Markers

  • E. A. VasyutkinaEmail author
  • I. Yu. Adrianova


The genetic diversity of Larix × lubarskii Sukaczev and its genetic relationships to other larches from the south of Primorsky krai and Far Eastern and Siberian Larix species were for the first time studied according to the analysis of the UBC460 mitochondrial origin fragment length polymorphism and nucleotide sequences of the 5'-flanking region of the atpA gene and nad4(3c–4r) region in mitochondrial DNA. Two length variants of the UBC460 fragment were detected in the L. × lubarskii population (with a predominance of the short one). This taxon is characterized by an average haplotype (0.582) and low nucleotide (0.0003) diversity. The comparative analysis of nucleotide polymorphism of two mtDNA regions in larches from the south of Primorsky krai revealed three mitotypes in L. × lubarskii; only one of them was common with L. olgensis A. Henry (locus classicus). The network of mitotype genealogical relationships indicates a common origin of L. × lubarskii and L. olgensis and their relatively recent divergence, as well as a closer relationship to L. sibirica Ledeb. than to L. gmelinii (Rupr.) Rupr.


Larix Pinaceae mitochondrial DNA UBC460 5'-flanking region of mitochondrial atpA gene nad4(3c–4r) genetic diversity 



We are grateful to V.Yu. Barkalov for the provided plant material, K.V. Kiselev for the assistance in the development of primers for PCR product amplification of the fragment of the 5'-flanking region of the mitochondrial atpA gene, and D.M. Atopkin for the assistance in the sample preparation for sequencing.

This work was supported by the Presidium of the Russian Academy of Sciences (project nos. 15-I-6-030 and 15-I-6-080).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Sukachev, V.N., About two new tree species valuable for forestry, Tr. Issled. Lesn. Khoz. Lesn. Prom., 1931, issue 10, pp. 12—18.Google Scholar
  2. 2.
    Kolesnikov, B.P., Contribution to the taxonomy and the historical development of larches (section Pauciseriales Patschke), in Materialy po istorii flory i rastitel’nosti SSSR (Materials on the History of Flora and Vegetation of the Soviet Union), Moscow: Akad. Nauk SSSR, 1946, pp. 21—86.Google Scholar
  3. 3.
    Nedoluzhko, V.A., Konspekt dendroflory rossiiskogo Dal’nego Vostoka (Dendroflora Conspectus of the Russian Far East), Vladivostok: Dal’nauka, 1995.Google Scholar
  4. 4.
    Farjon, A., World Checklist and Bibliography of Conifers, Kew: Royal Botanic Gardens, 2001, 2nd. ed.Google Scholar
  5. 5.
    Farjon, A., A Handbook of the World’s Conifers, Leiden: BRILL, 2010.CrossRefGoogle Scholar
  6. 6.
    Chang, C.S., Kim, H., and Chang, K.S., Provisional Checklist of Vascular Plants for the Korea Peninsula Flora, DESIGNPOST, Pajo, 2014, pp. 1—660.Google Scholar
  7. 7.
    Dylis, N.V., Listvennitsa Vostochnoi Sibiri i Dal’nego Vostoka (Larch of Eastern Siberia and the Far East), Moscow: Akad. Nauk SSSR, 1961.Google Scholar
  8. 8.
    Bobrov, E.G., Istoriya i sistematika listvennits (History and Systematics of Larchs), issue 25 of Komarovskie chteniya (Komarov Lectures), Leningrad: Nauka, 1972.Google Scholar
  9. 9.
    Urusov, V.M., Gibridizatsiya v prirodnoi flore Dal’nego Vostoka i Sibiri (prichiny i perspektivy ispol’zovaniya) (Hybridization in the Natural Flora of the Far East and Siberia (Causes and Perspectives of Utilization)), Vladivostok: Dal’nauka, 2002.Google Scholar
  10. 10.
    Urusov, V.M., Lobanova, I.I., and Varchenko, L.I., Khvoinye derev’ya i kustarniki rossiiskogo Dal’nego Vostoka: geografiya i ekologiya (Coniferous Trees and Shrubs of the Russian Far East: Geography and Ecology), Vladivostok: Dal’nauka, 2004.Google Scholar
  11. 11.
    Shishkin, I.K., Learning of the Olgan Larch (Larix olgensis A. Henry), Bot. Zh., 1933, vol. 18, no. 3, pp. 162—210.Google Scholar
  12. 12.
    Gukov, G.V., Listvennitsy i listvennichnye lesa rossiiskogo Dal’nego Vostoka (Larches and Larch Forests of the Russian Far East), Vladivostok: Gorno-Taezhnaya Stantsiya Dal’nevost. Otd. Ross. Akad. Nauk, 2009.Google Scholar
  13. 13.
    Golubeva, L.V. and Karaulova, L.P., Rastitel’nost’ i klimatostratigrafiya pleistotsena i golotsena yuga Dal’nego Vostoka SSSR (Vegetation and Climatic Stratigraphy of the Pleistocene and Holocene in the South of the Soviet Far East), Moscow: Nauka, 1983.Google Scholar
  14. 14.
    Krestov, P.V., Barkalov, V.Yu., Omel’ko, A.M., et al., Reliktovye kompleksy rastitel’nosti sovremennykh refugiumov Severo-Vostochnoi Azii (Relic Vegetation Complexes of Modern Refugia in Northeast Asia), issue 56 of Komarovskie chteniya (Komarov Lectures), Leningrad: Nauka 2009, pp. 5—63.Google Scholar
  15. 15.
    Sukachev, V.N., To the history of the larches’ development, in Lesnoe delo (Forestry), Moscow: Novaya Derevnya, 1924, pp. 12—44.Google Scholar
  16. 16.
    Koropachinskii, I.Yu., Gymnosperms, in Sosudistye rasteniya sovetskogo Dal’nego Vostoka (Vascular Plants of the Soviet Far East), Leningrad: Nauka, 1989, pp. 9—25.Google Scholar
  17. 17.
    Potokin, A.F., Ivanov, S.A., and Orlova, L.V., Diversity of Larix olgensis A. Henry forests from in the middle and southern part of Primorsky Krai, Trudy XIII s’yezda Russkogo botanicheskogo obshchestva (Proceedings of the 13th Congress of the Russian Botanical Society), Tolyatti, 2013, vol. 2, pp. 296—297.Google Scholar
  18. 18.
    Semerikov, V.L., Vendramin, G.G., Sebastiani, F., and Lascoux, M., RAPD-derived, PCR-based mitochondrial markers for Larix species and their usefulness in phylogeny, Conserv. Genet., 2006, vol. 7, no. 4, pp. 621—625.CrossRefGoogle Scholar
  19. 19.
    Semerikov, V.L. and Polezhaeva, M.A., Mitochondrial DNA variation pattern in larches of Eastern Siberia and the Far East, Russ. J. Genet., 2007, vol. 43, no. 6, pp. 646—653.CrossRefGoogle Scholar
  20. 20.
    Semerikov, V.L., Semerikova, S.A., Polezhaeva, M.A., et al., Southern montane populations did not contribute to the recolonisation of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers, Mol. Ecol., 2013. vol. 22, no. 19, pp. 4958—4971. CrossRefGoogle Scholar
  21. 21.
    Polezhaeva, M.A., Lascoux, M., and Semerikov, V.L., Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia, Mol. Ecol., 2010, vol. 19, pp. 1239—1252. CrossRefGoogle Scholar
  22. 22.
    Vasyutkina, E.A., Adrianova, I.Yu., Kozyrenko, M.M., et al., Genetic differentiation of larch populations from the Larix olgensis range and their relationships with larches from Siberia and Russian Far East, For. Sci. Technol., 2007, vol. 3, no. 2, pp. 132—138.Google Scholar
  23. 23.
    Vasyutkina, E.A., Lauve, L.S., Reunova, G.D., and Zhuravlev, Yu.N., Larch chromosomal mosaicism in Primorye, Biol. Bull., 2010, no. 6, pp. 574—578.Google Scholar
  24. 24.
    Vasyutkina, E.A., Reunova, G.D., Tupikin, A.E., and Zhuravlev, Yu.N., Mitochondrial DNA variation in Olga Bay larch (Larix olgensis A. Henry) from Primorsky Krai of Russia, Russ. J. Genet., 2014, vol. 50, no. 3, pp. 253—260. CrossRefGoogle Scholar
  25. 25.
    Polezhaeva, M.A., Semerikov, V.L., and Pimenova, E.A., Genetic diversity of larch at the North of Primorskii krai and limits of Larix olgensis A. Henry distribution, Russ. J. Genet., 2013, vol. 45, no. 5, pp. 497—502. CrossRefGoogle Scholar
  26. 26.
    Isabel, N., Tremblay, L., Michaud, M., et al., RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis derived populations of Picea mariana (Mill.) B.S.P., Theor. Appl. Genet., 1993, vol. 86, pp. 81—87.CrossRefGoogle Scholar
  27. 27.
    Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725—2729. CrossRefGoogle Scholar
  28. 28.
    Excoffier L., Lischer H.E.L. Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2010, vol. 10, pp. 564—567. CrossRefGoogle Scholar
  29. 29.
    Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. CrossRefGoogle Scholar
  30. 30.
    Bandelt, H.-J., Forster, P., Sykes, B.C., and Richards, M.B., Mitochondrial portraits of human populations, Genetics, 1995, vol. 141, pp. 743—753.Google Scholar
  31. 31.
    Corander, J., Marttinen, P., Sirén, J., and Tang, J., Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations, BMC Bioinf., 2008, no. 9, p. 539.
  32. 32.
    Semerikov, V.L., Semerikov, L.F., and Lascoux, M., Intra- and interspecific allozyme variability in Eurasian Larix Mill. species, Heredity, 1999, vol. 82, pp. 193—204.CrossRefGoogle Scholar
  33. 33.
    Blokhina, N.I. and Bondarenko, O.V., Fossil plant assemblages from the Pliocene of southern Primory’e Region (Russian Far East): implications for reconstruction of plant communities and their environments, Acta Palaeobot., 2011, vol. 51, no. 1, pp. 19—37.Google Scholar
  34. 34.
    Bondarenko, O.V., Blokhina, N.I., Bruch, A.A., et al., Quantification of Calabrian vegetation in Southern Primory’e (Far East of Russia) using multiple proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2017, vol. 467, pp. 253—264. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations