Advertisement

Russian Journal of Genetics

, Volume 55, Issue 2, pp 133–143 | Cite as

Genetic and Epigenetic Pathways of lethal (2) giant larvae Tumor Suppressor in Drosophila melanogaster

  • N. Ya. WeismanEmail author
REVIEWS AND THEORETICAL ARTICLES
  • 3 Downloads

Abstract

The tumor suppressors are fundamental development genes with a complete penetrance. Recessive mutations in the l(2)gl suppressor in drosophila are accompanied by complex phenotypic syndromes. Realization of the l(2)gl locus functions is performed by genetic and epigenetic pathways. The Lgl gene product in complex protein complexes controls the establishment of the cell polarity in epithelial stem and nerve cells. The degree of the l(2)gl involvement in the regulation of early development, longevity, stress response, and tumor development can depend on the microRNA expression level, the presence of intracellular symbionts, and mutations of other vital genes and is affected by various impacts.

Keywords:

tumor suppressor microRNA cell polarity longevity adaptivity 

Notes

ACKNOWLEDGMENTS

I am grateful to M.D. Golubovskii for long-term collaboration in the studies of the adaptive properties using the l(2)gl tumor suppressor genetic model.

This work was supported in part by the budgetary project of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, no. 0324-2018-0016.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Stern, C. and Bridges, C.B., The mutants of the extreme left end of the second chromosome of Drosophila melanogaster, Genetics, 1926, vol. 11, no. 6, pp. 503—530.Google Scholar
  2. 2.
    Hadorn, E., An acceleration effect of normal “ring-glands” on puparium-formation in lethal larvae of Drosphila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1937, vol. 23, no. 9, pp. 478—484.CrossRefGoogle Scholar
  3. 3.
    Ajioka, I. and Dyer, M.A., A new model of tumor susceptibility following tumor suppressor gene inactivation, Cell Cycle, 2008, vol. 7, no. 6, pp. 735—740.  https://doi.org/10.4161/cc.7.6.5612 CrossRefGoogle Scholar
  4. 4.
    Omelyanchuk, L.V. and Pertseva, Yu.A., Phylogenetic study of formation of the lethal(2)giant larvae tumor suppressor protein family, Dokl. Biochem. Biophys., 2010, vol. 430, nos. 1—6, pp. 50—52.CrossRefGoogle Scholar
  5. 5.
    Gateff, E., Malignant and benign neoplasms of Drosophila melanogaster, in Genetics and Biology of Drosophila, New York: Acad. Press., 1978, vol. 2b, pp. 181—275.Google Scholar
  6. 6.
    Golubovsky, M.D., The “lethal giant larvae”—the most frequent second chromosome lethal in natural population of D. melanogaster, Drosophila Inf. Serv., 1978, vol. 53, p. 179.Google Scholar
  7. 7.
    Manfruelli, P., Arquier, N., Hanratty, W.P., and Semeriva, M., The tumor suppressor gene, lethal(2)giant larvae (1(2)g1), is required for cell shape change of epithelial cells during Drosophila development, Development, 1996, vol. 122, no. 7, pp. 2283—2294.Google Scholar
  8. 8.
    Brumby, A.M., Richardson, H.E., Using D. melanogaster to map human cancer pathways, Nat. Cancer Rev., 2005, vol. 5, no. 8, pp. 626—639.  https://doi.org/10.1038/nrc1671 CrossRefGoogle Scholar
  9. 9.
    Bilder, D., Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors, Genes Dev., 2004, vol. 18, no. 16, pp. 1909—1925.  https://doi.org/10.1101/gad.1211604 CrossRefGoogle Scholar
  10. 10.
    Klezovitch, O., Fernandez, T.E., Tapscott, S.J., and Vasioukhin, V., Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice, Genes Dev., 2004, vol. 18, no. 5, pp. 559—571.  https://doi.org/10.1101/gad.1178004 CrossRefGoogle Scholar
  11. 11.
    Suzuki, A. and Ohno, S., The PAR-aPKC system: lessons in polarity, J. Cell Sci., 2006, vol. 119, no. 6, pp. 979—987.  https://doi.org/10.1242/jcs.02898 CrossRefGoogle Scholar
  12. 12.
    Fichelson, P., Jagut, M., Lepanse, S., et al., lethal giant larvae is required with the par genes for the early polarization of the Drosophila oocyte, Development, 2010, vol. 137, no. 5, pp. 815—824.CrossRefGoogle Scholar
  13. 13.
    Hutterer, A., Betschinger, J., Petronczki, M., and Knoblich, J.A., Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis, Dev. Cell., 2004, vol. 6, no. 6, pp. 845—854.  https://doi.org/10.1016/j.devcel.2004.05.003 CrossRefGoogle Scholar
  14. 14.
    Prehoda, K.E., Polarization of Drosophila neuroblasts during asymmetric division, Cold Spring Harb. Perspect. Biol., 2009, vol. 1, no. 2, pp. 1—12.CrossRefGoogle Scholar
  15. 15.
    Humbert, P.O., Grzeschik, N.A., Brumby, A.M., et al., Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module, Oncogene, 2008, vol. 27, no. 55, pp. 6888—6907.  https://doi.org/10.1038/onc.2008.341 CrossRefGoogle Scholar
  16. 16.
    Torok, I., Hartenstein, K., Kalmes, A., et al., The l(2)gl homologue of Drosophila pseudoobscura suppresses tumorigenicity in transgenic Drosophila melanogaster, Oncogene, 1993, vol. 8, no. 6, pp. 1537—1549.Google Scholar
  17. 17.
    Chia, W., Somers, W.G., and Wang, H., Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis, J. Cell Biol., 2008, vol. 180, no. 2, pp. 267—272.  https://doi.org/10.1083/jcb.200708159 CrossRefGoogle Scholar
  18. 18.
    Li, Q., Shen, L., Xin, T., et al., Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis, BMC Dev. Biol., 2009, vol. 9, no. 1, p. 60.  https://doi.org/10.1186/1471-213X-9-60 CrossRefGoogle Scholar
  19. 19.
    Danen, E.H. and Sonnenberg, A., Integrins in regulation of tissue development and function, J. Pathol., 2003, vol. 201, no. 4, pp. 632—641.  https://doi.org/10.1002/path.1472 CrossRefGoogle Scholar
  20. 20.
    Golubovskaya, V.M. and Cance, W.G., FAK and p53 protein interactions, Anticancer Agents Med. Chem., 2011, vol. 11, no. 7, pp. 617—619.CrossRefGoogle Scholar
  21. 21.
    Palmer, R.H., Fessler, L.I., Edeen, P.T., et al., DFak56 is a novel Drosophila melanogaster focal adhesion kinase, J. Biol. Chem., 1999, vol. 274, no. 50, pp. 35621—35629.CrossRefGoogle Scholar
  22. 22.
    Landgraf, P., Rusu, M., Sheridan, R., et al., A mammalian microRNA expression atlas based on small RNA library sequencing, Cell, 2007, vol. 129, no. 7, pp. 1401—1414.  https://doi.org/10.1016/j.cell.2007.04.040 CrossRefGoogle Scholar
  23. 23.
    Ventura, A. and Jacks, T., MicroRNAs and cancer: short RNAs go a long way, Cell, 2009, vol. 136, no. 4, pp. 586—591.  https://doi.org/10.1016/j.cell.2009.02.005 CrossRefGoogle Scholar
  24. 24.
    Pipan, V., Zorc, M., and Kunej, T., MicroRNA polymorphisms in cancer: a literature analysis, Cancers (Basel), 2015, vol. 7, no. 3, pp. 1806—1814.  https://doi.org/10.3390/cancers7030863 CrossRefGoogle Scholar
  25. 25.
    Sun, D., Yu, F., Ma, Y., et al., MicroRNA-31 activates the RAS pathway and functions as an oncogenic microRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1), J. Biol. Chem., 2013, vol. 288, no. 13, pp. 9508—9518.  https://doi.org/10.1056/NEJMoa1214609
  26. 26.
    Saito, Y., Saito, H., Liang, G., and Friedman, J.M., Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review, Clin. Rev. Allergy Immunol., 2014, vol. 47, no. 2, pp. 128—135.  https://doi.org/10.1007/s12016-013-8401-z CrossRefGoogle Scholar
  27. 27.
    Chawla, G., Deosthale, P., Childress, S., et al., A let-7-to-miR-125 microRNA switch regulates neuronal integrity and lifespan in Drosophila, PLoS Genet., 2016, vol. 12, no. 8, pp. 1—29.  https://doi.org/10.1371/journal.pgen.1006247 CrossRefGoogle Scholar
  28. 28.
    Dhahbi, J.M., Atamna, H., Li, R., et al., MicroRNAs circulate in the hemolymph of Drosophila and accumulate relative to tissue microRNAs in an age-dependent manner, Genomics Insights, 2016, vol. 9, pp. 29—39.  https://doi.org/10.4137/GEI.S38147 CrossRefGoogle Scholar
  29. 29.
    Nozawa, M., Fujimi, M., Iwamoto, C., et al., Evolutionary transitions of microRNA-target pairs, Genome Biol. Evol., 2016, vol. 8, no. 5, pp. 1621—1633.  https://doi.org/10.1093/gbe/evw092 CrossRefGoogle Scholar
  30. 30.
    Guan, H., Dai, Z., Ma, Y., et al., MicroRNA-101 inhibits cell proliferation and induces apoptosis by targeting EYA1 in breast cancer, Int. J. Mol. Med., 2016, vol. 37, no. 6, pp. 1643—1651.  https://doi.org/10.3892/ijmm.2016.2557 CrossRefGoogle Scholar
  31. 31.
    Yang, H., Li, M., Hu, X., et al., MicroRNA-dependent roles of Drosha and Pasha in the Drosophila larval ovary morphogenesis, Dev. Biol., 2016, vol. 416, no. 2, pp. 312—323.  https://doi.org/10.1016/j.ydbio.2016.06.026 CrossRefGoogle Scholar
  32. 32.
    Calin, G.A. and Croce, C.M., MicroRNA—cancer connection: the beginning of a new tale, Cancer Res., 2006, vol. 66, no. 15, pp. 7390—7394.  https://doi.org/10.1158/0008-5472.CAN-06-0800 CrossRefGoogle Scholar
  33. 33.
    Daikoku, T., Hirota, Y., Tranguch, S., et al., Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice, Cancer Res., 2008, vol. 68, no. 14, pp. 5619—5627.  https://doi.org/10.1158/0008-5472.CAN-08-1274 CrossRefGoogle Scholar
  34. 34.
    Tekirdag, K.A., Akkoc, Y., Kosar, A., and Gozuacik, D., MIR-376 family and cancer, Histol. Histopathol., 2016, vol. 31, no. 8, pp. 841—855.  https://doi.org/10.14670/HH-11-752 Google Scholar
  35. 35.
    Yang, W., Zhou, C., Luo, M., et al., MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1, Oncotarget, 2016, vol. 7, no. 13, pp. 16703—16715.  https://doi.org/10.18632/oncotarget.7697 Google Scholar
  36. 36.
    Zhang, Y.C., Ye, H., Zeng, Z., et al., The NF-κB p65/miR-23a-27a-24 cluster is a target for leukemia treatment, Oncotarget, 2015, vol. 6, no. 32, pp. 33554—33567.  https://doi.org/10.18632/oncotarget.5591 Google Scholar
  37. 37.
    Funikov, S.Y., Ryazansky, S.S., and Kanapin, A.A., Interplay between RNA interference and heat shock response systems in Drosophila melanogaster, Open Biol., 2016, vol. 6, no. 10, p. 13.  https://doi.org/10.1098/rsob.160224 CrossRefGoogle Scholar
  38. 38.
    De Lella, EzcurraA.L., Bertolin, A.P., Kim, K., et al., miR-190 enhances HIF-dependent responses to hypoxia in Drosophila by inhibiting the prolyl-4-hydroxylase Fatiga, PLoS Genet., 2016, vol. 12, no. 5, pp. 1—24.  https://doi.org/10.1371/journal.pgen.1006073 Google Scholar
  39. 39.
    Ghezzi, A., Zomeno, M., Pietrzykowski, A.Z., and Atkinson, N.S., Immediate-early alcohol-responsive miRNA expression in Drosophila, J. Neurogenet., 2016, vol. 30, nos. 3—4, pp. 195—204.  https://doi.org/10.1080/01677063.2016.1252764 CrossRefGoogle Scholar
  40. 40.
    Mechler, B.M., McGinnis, W., and Gehring, W.J., Molecular cloning of lethal(2)giant larva, a recessive oncogene of Drosophila melanogaster, EMBO J., 1985, vol. 4, no. 6, pp. 1551—1557.CrossRefGoogle Scholar
  41. 41.
    Cox, D.N., Seyfried, S.A., Jan, L.Y., and Jan, Y.N., Bazooka and atypical protein kinase C are required to regulate oocyte differentiation in the Drosophila ovary, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 25, pp. 14475—14480.  https://doi.org/10.1073/pnas.261565198 CrossRefGoogle Scholar
  42. 42.
    Luo, H., Li, X., Claycomb, J.M., and Lipshitz, H.D., The Smaug RNA-binding protein is essential for microRNA synthesis during the Drosophila maternal-to-zygotic transition, Genes, Genomes, Genet., 2016, vol. 6, pp. 3541—3551.  https://doi.org/10.1534/g3.116.034199 Google Scholar
  43. 43.
    Varghese, J. and Cohen, S.M., MicroRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila, Genes Dev., 2007, vol. 21, no. 18, pp. 2277—2782.  https://doi.org/10.1101/gad.439807 CrossRefGoogle Scholar
  44. 44.
    De Lorenzo, C., Mechler, B.M., and Bryant, P.J., What is Drosophila telling us about cancer?, Cancer Metastasis Rev., 1999, vol. 18, no. 3, pp. 295—311.CrossRefGoogle Scholar
  45. 45.
    Golubovsky, M.D., Weisman, N.Y., Arbeev, K.G., et al., Decrease in the lgl tumor suppressor dose in Drosophila increases survival and longevity in stress conditions, Exp. Gerontol., 2006, vol. 41, no. 9, pp. 819—827.  https://doi.org/10.1016/j.exger.2006.06.035 CrossRefGoogle Scholar
  46. 46.
    Weisman, N.Ya. and Golubovsky, M.D., Survival and longevity depend on oogenesis stress and the dose of the lgl tumor suppressor: studies on Drosophila as a model, Dokl. Biol. Sci., 2008, vol. 419, no. 1, pp. 90—95. .  https://doi.org/10.1134/S0012496608020063 CrossRefGoogle Scholar
  47. 47.
    Weisman, N.Y., Golubovsky, M.D., and Zenkov, N.K., et al., Variability of the antioxidant effect on survival: modeling in drosophila lines with different lifespan and l(2)gl-tumor suppressor dosage, Biol. Bull., 2010, vol. 37, no. 3, pp. 246—253. .  https://doi.org/10.1134/S1062359010030052 CrossRefGoogle Scholar
  48. 48.
    Farkas, R. and Mechler, B.M., The timing of Drosophila salivary gland apoptosis displays an l(2)gl-dose response, Cell Death Differ., 2000, vol. 7, pp. 89—101.  https://doi.org/10.1038/sj.cdd.4400621 CrossRefGoogle Scholar
  49. 49.
    Grzeschik, N.A., Amin, N., Secombe, J., et al., Abnormalities in cell proliferation and apico-basal cell polarity are separable in Drosophila lgl mutant clones in the developing eye, Dev. Biol., 2007, vol. 311, no. 1, pp. 106—123.  https://doi.org/10.1016/j.ydbio.2007.08.025 CrossRefGoogle Scholar
  50. 50.
    Ralser, M. and Lehrach, H., Building a new bridge between metabolism, free radicals and longevity, Aging (Albany New York), 2009, vol. 1, no. 10, pp. 836—838.  https://doi.org/10.18632/aging.100089 CrossRefGoogle Scholar
  51. 51.
    Horng-Dar, W., Kazemi-Esfarjani, P., and Benzer, S., Multiple-stress analysis for isolation of Drosophila longevity genes, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 34, pp. 12610—12615.CrossRefGoogle Scholar
  52. 52.
    Dai, C., Whitesell, L., Rogers, A.B., and Lindquist, S., Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis, Cell, 2007, vol. 130, no. 6, pp. 1005—1018.  https://doi.org/10.1016/j.cell.2007.07.020 CrossRefGoogle Scholar
  53. 53.
    Logan, I.R., McNeill, H.V., Cook, S., et al., Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage, Nucleic Acids Res., 2009, vol. 37, no. 9, pp. 2962—2973.  https://doi.org/10.1093/nar/gkp180 CrossRefGoogle Scholar
  54. 54.
    Jedlicka, P., Mortin, M.A., and Wu, C., Multiple functions of Drosophila heat shock transcription factor in vivo, EMBO J., 1997, vol. 16, no. 9, pp. 2452—2462.CrossRefGoogle Scholar
  55. 55.
    Weisman, N.Ya., Evgen’ev, M.B., and Golubovsky, M.D., Parallelism and paradoxes on viability and the life span of two loss-of-function mutations: heat shock protein transcriptional regulator hsf  1 and l(2)gl tumor suppressor in Drosophila melanogaster, Biol. Bull., 2012, vol. 39, no. 1, pp. 22—28. .  https://doi.org/10.1134/S1062359012010128 CrossRefGoogle Scholar
  56. 56.
    Vaisman, N.Ya., Golubovskii, M.D., and Ilinskii, Yu.Yu., Interpopulation and sex-specific life span differences in human populations and their modeling in drosophila, Usp. Gerontol., 2013, vol. 26, no. 1, pp. 66—75.Google Scholar
  57. 57.
    Zhang, G., Hussain, M., and Asgari, S., Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication, Insect Biochem. Mol. Biol., 2014, vol. 53, pp. 81—88.  https://doi.org/10.1016/j.ibmb.2014.08.003 CrossRefGoogle Scholar
  58. 58.
    Clark, M.E., Heath, B.D., Anderson, C.L., and Karr, T.L., Induced paternal effects mimic cytoplasmic incompatibility in Drosophila, Genetics, 2006, vol. 173, pp. 727—734.  https://doi.org/10.1534/genetics.105.052431 CrossRefGoogle Scholar
  59. 59.
    Strand, D., Jakobs, R., Merdes, G., et al., The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain, J. Cell Biol., 1994, vol. 127, pp. 1361—1373.CrossRefGoogle Scholar
  60. 60.
    Peng, C.Y., Manning, L., Albertson, R., and Doe, C.Q., The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts, Nature, 2000, vol. 408, pp. 596—600.  https://doi.org/10.1038/35046094 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations