Advertisement

Russian Journal of Genetics

, Volume 55, Issue 2, pp 220–231 | Cite as

Widely Applicable PCR Markers for Sex Identification in Birds

  • M. N. RomanovEmail author
  • A. M. Betuel
  • L. G. Chemnick
  • O. A. Ryder
  • R. O. Kulibaba
  • O. V. Tereshchenko
  • W. S. Payne
  • Ph. C. Delekta
  • J. B. Dodgson
  • E. M. Tuttle
  • R. A. Gonser
ANIMAL GENETICS
  • 5 Downloads

Abstract

To aid in avian sex determination if birds are not sexually dimorphic and/or they are sexually immature, several molecular assays involving the polymerase chain reaction (PCR) have been developed. To test in a variety of domestic and wild avian species applicability of five sexing assays: previously described four assays based on nucleotide sequence differences between the Z and W copy of the chicken chromodomain-helicase-DNA-binding protein gene (CHD1Z and CHD1W), and a new sexing marker using the ubiquitin associated protein 2 (UBAP2) gene sequence. At least one molecular sexing marker was successful in 84 out of 88 examined species across 13 avian orders. These assays may be useful in breeding management of domestic and wild birds as well as in studies of avian ecology, population genetics, embryology and transgenesis.

Keywords:

Aves birds DNA markers PCR-based sexing 

Notes

ACKNOWLEDGMENTS

The work was supported by grants from the United States Department of Agriculture/Cooperative State Research, Education, and Extension Service (99-35205-8566 and 2001-52100-11225) to J.B. Dodgson, and from the National Institutes of Health (R01GM084229) to E.M. Tuttle and R.A. Gonser. We are most grateful to Hans Ellegren (Uppsala University, Uppsala, Sweden) and Nate Kahn (University of Denver, Denver, CO, USA) for sharing aliquots of the sexing primers, 2550F/2718R and 1237L/1272H, respectively. We also thank Hans Ellegren for providing us with the UBAP2 sequence information, and Hans Cheng (USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI, USA) for sequencing the common quail CHD1 fragments. Natalie Dubois (Michigan State University, East Lansing, MI, USA) is acknowledged for sharing the House Wren DNA samples, and Tanya Romanov (Michigan State University, East Lansing, MI, USA) and Sarah Ford (Indiana State University, Terre Haute, IN, USA) for technical assistance. We thank Olga Krestinina (Zelenodolsk, Russia) for graphical work.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Millar, C.D., Lambert, D.M., Anderson, S. and Halverson, J.L., Molecular sexing of the communally breeding pukeko: an important ecological tool, Mol. Ecol., 1996, vol. 5, no. 2, pp. 289—293. https://onlinelibrary.wiley.com/doi/10.1046/j.1365-294X.1996.00076.x.CrossRefGoogle Scholar
  2. 2.
    Ellegren, H. and Fridolfsson, A.K., Male-driven evolution of DNA sequences in birds, Nat. Genet., 1997, vol. 17, no. 2, pp. 182—184.  https://doi.org/10.1038/ng1097-182. CrossRefGoogle Scholar
  3. 3.
    Lessells, K., More mutations in males, Nature, 1997, vol. 390, no. 6657, pp. 236—237.  https://doi.org/10.1038/36745.CrossRefGoogle Scholar
  4. 4.
    Kahn, N.W. and Quinn, T.W., Male-driven evolution among Eoaves? A test of the replicative division hypothesis in a heterogametic female (ZW) system, J. Mol. Evol., 1999, vol. 49, no. 6, pp. 750—759.  https://doi.org/10.1007/PL00006597.CrossRefGoogle Scholar
  5. 5.
    Robertson, B.C., Millar, C.D., Minot, E.O., et al., Sexing the critically endangered kakapo Strigops habroptilus, Emu, 2000, vol. 100, no. 4, pp. 336—339.  https://doi.org/10.1071/MU00056.CrossRefGoogle Scholar
  6. 6.
    Bermudez-Humaran, L.G., Garcia-Garcia, A., Leal-Garza, C.H., et al., Molecular sexing of monomorphic endangered Ara birds, J. Exp. Zool., 2002, vol. 292, no. 7, pp. 677—680.  https://doi.org/10.1002/jez.10070.CrossRefGoogle Scholar
  7. 7.
    Romanov, M.N. and Bondarenko, Y.V., Use of autosexing in waterfowl breeding and production, in Proceedings of 10th European Symposium on Waterfowl, Halle, 1995, pp. 473—476.Google Scholar
  8. 8.
    Wang, N. and Shoffner, R.N., Trypsin G- and C-banding for interchange analysis and sex identification in the chicken, Chromosoma, 1974, vol. 47, no. 1, pp. 61—69.  https://doi.org/10.1007/BF00326271.CrossRefGoogle Scholar
  9. 9.
    Nakamura, D., Tiersch, T.R., Douglass, M. and Chandler, R.W., Rapid identification of sex in birds by flow cytometry, Cytogenet. Cell Genet., 1990, vol. 53, no. 4, pp. 201—205.  https://doi.org/10.1159/000132930.CrossRefGoogle Scholar
  10. 10.
    De Vita, R., Cavallo, D., Eleuteri, P. and Dell’Omo, G., Evaluation of interspecific DNA content variations and sex identification in Falconiformes and Strigiformes by flow cytometric analysis, Cytometry, 1994, vol. 16, no. 4, pp. 346—350.  https://doi.org/10.1002/cyto.990160409.CrossRefGoogle Scholar
  11. 11.
    Kagami, H., Nakamura, H. and Tomita, T., Sex identification in chickens by means of the presence of the W chromosome specific repetitive DNA units, Jpn. Poult. Sci., 1990, vol. 27, no. 5, pp. 379—384.  https://doi.org/10.2141/jpsa.27.379.CrossRefGoogle Scholar
  12. 12.
    Cassar, G., Mohammed, M., John, T.M., et al., Differentiating between parthenogenetic and “positive development” embryos in turkeys by molecular sexing, Poult. Sci., 1998, vol. 77, no. 10, pp. 1463—1468.  https://doi.org/10.1093/ps/77.10.1463.CrossRefGoogle Scholar
  13. 13.
    D’Costa, S. and Petitte, J.N., Sex identification of turkey embryos using a multiplex polymerase chain reaction, Poult. Sci., 1998, vol. 77, no. 5, pp. 718—721.  https://doi.org/10.1093/ps/77.5.718.CrossRefGoogle Scholar
  14. 14.
    Trefil, P., Bruno, M.M., Mikus, T. and Thoraval, P., Sexing of chicken feather follicle, blastodermal and blood cells, Folia Biol. (Praha), 1999, vol. 45, no. 6, pp. 253—256.Google Scholar
  15. 15.
    Ogawa, A., Solovei, I., Hutchison, N., et al., Molecular characterization and cytological mapping of a non-repetitive DNA sequence region from the W chromosome of chicken and its use as a universal probe for sexing Carinatae birds, Chromosome Res., 1997, vol. 5, no. 2, pp. 93—101.  https://doi.org/10.1023/A:1018461906913. CrossRefGoogle Scholar
  16. 16.
    Ellegren, H., First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds, Proc. R. Soc. Lond. B Biol. Sci., 1996, vol. 263, no. 1377, pp. 1635—1641.  https://doi.org/10.1098/rspb.1996.0239.CrossRefGoogle Scholar
  17. 17.
    Griffiths, R., Daan, S. and Dijkstra, C., Sex identification in birds using two CHD genes, Proc. R. Soc. Lond. B Biol. Sci., 1996, vol. 263, no. 1374, pp. 1251—1256.  https://doi.org/10.1098/rspb.1996.0184.CrossRefGoogle Scholar
  18. 18.
    Griffiths, R. and Korn, R.M., A CHD1 gene is Z chromosome linked in the chicken Gallus domesticus, Gene, 1997, vol. 197, nos. 1—2, pp. 225—229.  https://doi.org/10.1016/S0378-1119(97)00266-7.CrossRefGoogle Scholar
  19. 19.
    Griffiths, R. and Tiwari, B., Sex of the last wild Spix’s macaw, Nature, 1995, vol. 375, no. 6531, p. 454.  https://doi.org/10.1038/375454a0.CrossRefGoogle Scholar
  20. 20.
    Griffiths, R., Double, M.C., Orr, K. and Dawson, R.J., A DNA test to sex most birds, Mol. Ecol., 1998, vol. 7, no. 8, pp. 1071—1075.  https://doi.org/10.1046/j.1365-294x.1998.00389.x.CrossRefGoogle Scholar
  21. 21.
    Kahn, N.W., St John, J. and Quinn, T.W., Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds, Auk, 1998, vol. 115, no. 4, pp. 1074—1078.  https://doi.org/10.2307/4089527.CrossRefGoogle Scholar
  22. 22.
    Fridolfsson, A.K. and Ellegren, H., A simple and universal method for molecular sexing of non-ratite birds, J. Avian Biol., 1999, vol. 30, no. 1, pp. 116—121.  https://doi.org/10.2307/3677252.CrossRefGoogle Scholar
  23. 23.
    Kerje, S., Sharma, P., Gunnarsson, U., et al., The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene, Genetics, 2004, vol. 168, no. 3, pp. 1507—1518.  https://doi.org/10.1534/genetics.104.027995.CrossRefGoogle Scholar
  24. 24.
    Crittenden, L.B., Provencher, L., Santangelo, L., et al., Characterization of a Red Jungle Fowl by White Leghorn backcross reference population for molecular mapping of the chicken genome, Poultry Sci., 1993, vol. 72, no. 2, pp. 334—348.  https://doi.org/10.3382/ps.0720334.CrossRefGoogle Scholar
  25. 25.
    Seutin, G., White, B.N. and Boag, P.T., Preservation of avian blood and tissue samples for DNA analyses, Can. J. Zool., 1991, vol. 69, no. 1, pp. 82—90.  https://doi.org/10.1139/z91-013.CrossRefGoogle Scholar
  26. 26.
    Lee, M.K., Ren, C.W., Yan, B., et al., Construction and characterization of three BAC libraries for analysis of the chicken genome, Anim. Genet., 2003, vol. 34, no. 2, pp. 151—152.  https://doi.org/10.1046/j.1365-2052.2003.00965_5.x.CrossRefGoogle Scholar
  27. 27.
    https://web.archive.org/web/20100709231600/http://hbz7.tamu.edu/homelinks/tool/bac_content.htm.Google Scholar
  28. 28.
    Madden, T.L., Tatusov, R.L. and Zhang, J., Applications of network BLAST server, Methods Enzymol., 1996, vol. 266, pp. 131—141.CrossRefGoogle Scholar
  29. 29.
    Higgins, D.G. and Sharp, P.M., Fast and sensitive multiple sequence alignments on a microcomputer, Comput. Appl. Biosci., 1989, vol. 5, no. 2, pp. 151—153.  https://doi.org/10.1093/bioinformatics/5.2.151.Google Scholar
  30. 30.
    Thompson, J.D., Higgins, D.G. and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673—4680.  https://doi.org/10.1093/nar/22.22.4673.CrossRefGoogle Scholar
  31. 31.
    Lombard, V., Camon, E.B., Parkinson, H.E., et al., EMBL-Align: a new public nucleotide and amino acid multiple sequence alignment database, Bioinformatics, 2002, vol. 18, no. 5, pp. 763—764.  https://doi.org/10.1093/bioinformatics/18.5.763.CrossRefGoogle Scholar
  32. 32.
    Axelsson, E., Smith, N.G.C., Sundström, H., et al., Male-biased mutation rate and divergence in autosomal, Z-linked and W-linked introns of chicken and turkey, Mol. Biol. Evol., 2004, vol. 21, no. 8, pp. 1538—1547.  https://doi.org/10.1093/molbev/msh157.CrossRefGoogle Scholar
  33. 33.
    Lawson Handley, L.J., Ceplitis, H. and Ellegren, H., Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution, Genetics, 2004, vol. 167, no. 1, pp. 367—376.  https://doi.org/10.1534/genetics.167.1.367.CrossRefGoogle Scholar
  34. 34.
    Sazanov, A.A., Sazanova, A.L., Stekolnikova, V.A., et al., Chromosomal localization of the UBAP2Z and UBAP2W genes in chicken, Anim. Genet., 2006, vol. 37, no. 1, pp. 72—73.  https://doi.org/10.1111/j.1365-2052.2005.01392.x.CrossRefGoogle Scholar
  35. 35.
    Albrecht, D.J., Sex ratio manipulation within broods of house wrens, Troglodytes aedon, Anim. Behav., 2000, vol. 59, no. 6, pp. 1227—1234.  https://doi.org/10.1006/anbe.1999.1420.CrossRefGoogle Scholar
  36. 36.
    Romanov, M.N., Kutnyuk, P.I. and Chernikov, V.F., Estimation of population structure and differentiation in black-headed gull by using genetic/oological parameters: 1. Analysis within an East-Ukrainian population, J. Ornithol., 1994, vol. 135, no. 1, p. 261.  https://doi.org/10.1007/BF02445773.CrossRefGoogle Scholar
  37. 37.
    Romanov, M.N. and Dodgson, J.B., Cross-species overgo hybridization and comparative physical mapping within avian genomes, Anim. Genet., 2006, vol. 37, no. 4, pp. 397—399.  https://doi.org/10.1111/j.1365-2052.2006.01463.x.CrossRefGoogle Scholar
  38. 38.
    Romanov, M.N., Koriabine, M., Nefedov, M., et al., Construction of a California condor BAC library and first-generation chicken—condor comparative physical map as an endangered species conservation genomics resource, Genomics, 2006, vol. 88, no. 6, pp. 711—718.  https://doi.org/10.1016/j.ygeno.2006.06.005.CrossRefGoogle Scholar
  39. 39.
    Romanov, M.N., Tuttle, E.M., Houck, M.L., et al., The value of avian genomics to the conservation of wildlife, BMC Genomics, 2009, vol. 10, suppl. 2, p. S10.  https://doi.org/10.1186/1471-2164-10-S2-S10. CrossRefGoogle Scholar
  40. 40.
    Romanov, M.N., Dodgson, J.B., Gonser, R.A. and Tuttle, E.M., Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral model, using interspecies overgo hybridization, BMC Res. Notes, 2011, vol. 4, p. 211.  https://doi.org/10.1186/1756-0500-4-211.CrossRefGoogle Scholar
  41. 41.
    Narushin, V.G., Romanov, M.N. and Bogatyr, V.P., Method for preincubational prediction of embryo sex in chicken eggs, in Proceedings of the 8th World Conference on Animal Production, Seoul, 1998, vol. 1, pp. 832—833.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. N. Romanov
    • 1
    Email author
  • A. M. Betuel
    • 2
  • L. G. Chemnick
    • 3
  • O. A. Ryder
    • 3
  • R. O. Kulibaba
    • 4
  • O. V. Tereshchenko
    • 5
  • W. S. Payne
    • 6
  • Ph. C. Delekta
    • 6
  • J. B. Dodgson
    • 6
  • E. M. Tuttle
    • 2
  • R. A. Gonser
    • 2
  1. 1.Comparative and Functional Genomics Group, School of Biosciences, University of KentCanterburyUK
  2. 2.The Center for Genomic Advocacy, Department of Biology, Indiana State UniversityTerre HauteUSA
  3. 3.Genetics Division, San Diego Zoo Institute for Conservation ResearchEscondidoUSA
  4. 4.Institute of Animal Science, National Academy of Agrarian Sciences of UkraineKulinichiUkraine
  5. 5.State Poultry Research Station, National Academy of Agrarian Sciences of UkraineBirkyUkraine
  6. 6.Department of Microbiology and Molecular Genetics, Biomedical and Physical Sciences Bldg., Michigan State UniversityEast LansingUSA

Personalised recommendations