Russian Journal of Genetics

, Volume 55, Issue 2, pp 246–252 | Cite as

Evaluation of Population Data and Forensic Parameters of Turkish Population on 30 Autosomal Insertion and Deletion Polymorphisms

  • A. Duvenci
  • O. Bulbul
  • G. FilogluEmail author


The InDel, based on the insertion or deletion in the human genome, is an alternative genetic marker for the widely used forensic STRs identification method. In this study we aim to determine forensic parameters of autosomal 30 InDel loci in Turkish population and to analyze the genetic differences between Turkish population and previously published other population data of alleged loci. We collected 250 blood samples from non-relative healthy volunteers. Then 30 insertion-deletion loci and amelogenin were amplified according to Investigator DIPplex® Kit manual (Qiagen). The PCR products were separated and analyzed. Forensic and population parameters of the 30 InDels were estimated with Promega PowerStats Excel worksheet, p-values of Hardy–Weinberg Equilibrium and FST test of population differentiation were calculated with Arlequin ver. 3.5. After Bonferonni correction the DIPplex allele frequency distributions showed no significant deviation from HWE. FST indicated that significant statistical differences were found between our population and Korean population at 16, Somalian population at 16, Taiwanian population at 9, Finnish population at 5, Polish population at 1 InDel loci. There is no statistically significant results in between our Turkish population sample, Turkish population in Denmark, and Italian populations in North-East Italy. We present population data and forensic parameters for 30 autosomal InDels studied in Turkish population samples. This data set will be useful in paternity, kinship analysis and also in identification of the forensic case samples. We also emphesis that Turkish population data is genetically closer to the nearby European populations as expected.


insertion/deletion polymorphism InDels Investigator DIPplex forensic genetics Turkey population genetics 



This research was supported by Istanbul University Research Fund (code no. 33193).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the Ethics Committee of the Istanbul University and informed consent was obtained from all individual participants involved in the study.


  1. 1.
    Zhong, Y., Budowle, B., and Center, F.B., The utility of short tandem repeat loci beyond human identification: implications for development of new DNA typing systems, Electrophoresis, 1999, vol. 20, pp. 1682—1696.CrossRefGoogle Scholar
  2. 2.
    Schneider, PM., Scientific standards for studies in forensic genetics, Forensic Sci. Int., 2007, vol. 165, no. 2, pp. 238—243.CrossRefGoogle Scholar
  3. 3.
    Edwards, A.L., Civitello, A., Hammond, H.A., and Caskey, C.T., DNA typing and genetic mapping with trimeric and tetrameric tandem repeats, Am. J. Hum. Genet., 1991, vol. 49, no. 5, p. 746.Google Scholar
  4. 4.
    Baumstark, A.L., Budowle, B., Defenbaugh, D.A., Keys, K.M., and Moretti, T.R., Population data on the thirteen CODIS core short tandem repeat loci in African Americans, US Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians, J. Forensic Sci., 1999, vol. 44, no. 6, pp. 1277—1286.Google Scholar
  5. 5.
    Butler, J.M., Shen, Y., and McCord, B.R., The development of reduced size STR amplicons as tools for analysis of degraded DNA, J. Forensic Sci., 2003, vol. 48, no. 5, pp. 1054—1064.Google Scholar
  6. 6.
    Fondevila, M., Phillips, C., Naverán, N., Cerezo, M., Rodríguez, A., et al., Challenging DNA: assessment of a range of genotyping approaches for highly degraded forensic samples, Forensic Sci. Int.: Genet. Suppl. Ser., 2008, vol. 1, no. 1, pp. 26—28.Google Scholar
  7. 7.
    Hollard, C., Mendisco, F., Keyser, C., Crubézy, E., and Ludes, B., First application of the Investigator DIPplex indels typing kit for the analysis of ancient DNA samples, Forensic Sci. Int.: Genet. Suppl. Ser., 2011, vol. 3, no. 1. e393—e394.Google Scholar
  8. 8.
    Manta, F., Caiafa, A., Pereira, R., Silva, D., Amorim, A., et al., Indel markers: genetic diversity of 38 polymorphisms in Brazilian populations and application in a paternity investigation with post mortem material, Forensic Sci. Int.: Genet., 2012, vol. 6, no. 5, pp. 658—661.CrossRefGoogle Scholar
  9. 9.
    Edelmann, J., Hering, S., Augustin, C., and Szibor, R., Indel polymorphisms—an additional set of markers on the X-chromosome, Forensic Sci. Int.: Genet. Suppl. Ser., 2009, vol. 2, no. 1, pp. 510—512.Google Scholar
  10. 10.
    Collins, F.S., Brooks, L.D., and Chakravarti, A., A DNA polymorphism discovery resource for research on human genetic variation, Genome Res., 1998, vol. 8, no. 12, pp. 1229—1231.CrossRefGoogle Scholar
  11. 11.
    Weber, J.L., David, D., Heil, J., Fan, Y., Zhao, C., et al., Human diallelic insertion/deletion polymorphisms, Am. J. Hum. Genet., 2002, vol. 71, no. 4, pp. 854—862.CrossRefGoogle Scholar
  12. 12.
    Mills, R.E., Luttig, C.T., Larkins, C.E., Beauchamp, A., Tsui, C., et al., An initial map of insertion and deletion (INDEL) variation in the human genome, Genome Res., 2006, vol. 16, no. 9, pp. 1182—1190.CrossRefGoogle Scholar
  13. 13.
    Pereira, R., Phillips, C., Alves, C., Amorim, A., Carracedo, Á., et al., A new multiplex for human identification using insertion/deletion polymorphisms, Electrophoresis, 2009, vol. 30, no. 21, pp. 3682—3690.CrossRefGoogle Scholar
  14. 14.
    Carvalho, A., Cainé, L., Carvalho, R., and Pinheiro, M.F., Application of indels (Investigator DIPplex) in mixture samples, Forensic Sci. Int.: Genet. Suppl. Ser., 2011, vol. 3, no. 1. e351—e352.Google Scholar
  15. 15.
    Torres, S.R., Uehara, C.J., Sutter-Latorre, A.F., de Almeida, B.S., Sauerbier, T.S., et al., Population genetic data and forensic parameters of 30 autosomal InDel markers in Santa Catarina State population, Southern Brazil, Mol. Boil. Rep., 2014, vol. 41, no. 8, pp. 5429—5433.CrossRefGoogle Scholar
  16. 16.
    LaRue, B.L., Ge, J., King, J.L., and Budowle, B., A validation study of the Qiagen Investigator DIPplex® kit; an INDEL-based assay for human identification, Int. J. Legal Med., 2012, vol. 126, no. 4, pp. 533—540.CrossRefGoogle Scholar
  17. 17.
    Martín, P., García, O., Heinrichs, B., Yurrebaso, I., Aguirre, A., et al., Population genetic data of 30 autosomal indels in Central Spain and the Basque Country populations, Forensic Sci. Int.: Genet., 2013, vol. 7, no. 2. e27—e30.CrossRefGoogle Scholar
  18. 18.
    Mullaney, J.M., Mills, R.E., Pittard, W.S., and Devine, S.E., Small insertions and deletions (INDELs) in human genomes, Hum. Mol. Genet., 2010, vol. 19, no. R2, pp. R131—R136.CrossRefGoogle Scholar
  19. 19.
    Pereira, R., Phillips, C., Pinto, N., Santos, C., dos Santos, S.E., et al., Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing, PLoS One, 2012, vol. 7, no. 1, e29684.CrossRefGoogle Scholar
  20. 20.
    Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, no. 3, pp. 564—567. CrossRefGoogle Scholar
  21. 21.
    Guo, S.W. and Thompson, E.A., Performing the exact test of Hardy—Weinberg proportion for multiple alleles, Biometrics, 1992, pp. 361—372.Google Scholar
  22. 22.
    Tereba, A., Tools for analysis of population statistics, Profiles DNA, 1999, vol. 2, no. 3, pp. 14—16.Google Scholar
  23. 23.
    Seong, K.M., Park, J.H., Hyun, Y.S., Kang, P.W., Choi, D.H., et al., Population genetics of insertion—deletion polymorphisms in South Koreans using Investigator DIPplex kit, Forensic Sci. Int.: Genet., 2014, vol. 8, no. 1, pp. 80—83.CrossRefGoogle Scholar
  24. 24.
    Neuvonen, A.M., Palo, J.U., Hedman, M., and Sajantila, A., Discrimination power of Investigator DIPplex loci in Finnish and Somali populations, Forensic Sci. Int.: Genet., 2012, vol. 6, no. 4. e99—e102.CrossRefGoogle Scholar
  25. 25.
    Pepinski, W., Abreu-Glowacka, M., Koralewska-Kordel, M., Michalak, E., Kordel, K., et al., Population genetics of 30 INDELs in populations of Poland and Taiwan, Mol. Boil. Rep., 2013, vol. 40, no. 7, pp. 4333—4338.CrossRefGoogle Scholar
  26. 26.
    Turrina. S, Filippini, G., and De Leo, D., Forensic evaluation of the Investigator DIPplex typing system, Forensic Sci. Int.: Genet. Suppl. Ser., 2011, vol. 3, no. 1. e331—e332.Google Scholar
  27. 27.
    Tomas, C., Poulsen, L., Drobnič, K., Ivanova, V., Jankauskiene, J., Bunokiene, D., Børsting, C., and Morling, N., Thirty autosomal insertion—deletion polymorphisms analyzed using the Investigator DIPplex® Kit in populations from Iraq, Lithuania, Slovenia, and Turkey, Forensic Sci. Int.: Genet., 2016, vol. 30;25, pp. 142—144.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Forensic Science Istanbul UniversityCerrahpasaTurkey

Personalised recommendations