Russian Journal of Genetics

, Volume 55, Issue 2, pp 172–179 | Cite as

Study of Prunus domestica Genetic Diversity by Analysis of Microsatellite Loci

  • I. I. SuprunEmail author
  • I. V. Stepanov
  • S. V. Tokmakov
  • G. V. Eremin


The present study investigated the genetic diversity and structure within the P. domestica species on the basis of analysis of 60 varieties by eight SSR loci. The study sample included various subspecies of domestic plum: mirabelle plums, greengages, damsons, and zwetschgen. The number of alleles per locus revealed in the study varied from 6 to 39; in total, 153 alleles were identified. The Bayesian method made it possible to identify four reconstructed panmictic populations. The contribution of reconstructed panmictic populations is specific to each group of P. domestica. According to the obtained data of the cluster analysis by UPGMA and PCoA, damsons represent the most genetically isolated subspecies of plums. On the other hand, the majority of varieties of domestic and foreign breeding do not form distinct groups in clustering, indicating the unity of the gene pool of cultivated plum forms.


plums genetic diversity microsatellites SSR markers 



  1. 1.
    Maynard C.K., Havanagh K., Fuernkranz H., and Draw, A., Black cherry (Prunus serotina Ehrh.), Biotechnol. Agr. For., 1991, vol. 16, pp. 3—22.Google Scholar
  2. 2.
    Crane, M.B. and Lawrence, W.J.C., Studies in sterility, Int. Hort. Congr., 1930, no. 9, pp. 100—116.Google Scholar
  3. 3.
    Salesses, G., Some data on the cytogenetics of plums and the origin of plums, Acta Hortic., 1975, vol. 1, no. 48, pp. 59—65.CrossRefGoogle Scholar
  4. 4.
    Bajashvili, E.I., Studies of some species of Prunus Mill. genus, Acta Hortic., 1990, no. 283, pp. 31—34.
  5. 5.
    Zohary, D., Is the European plum, Prunus domestica L., a P. cerasifera EHRH × P. spinosa L. allopolyploid, Euphytica, 1992, vol. 60, pp. 75—77. Google Scholar
  6. 6.
    Woldring, H., On the origin of plums: a study of sloe, damson, cherry plum, domestic plums and their intermediates, Palaeohistoria, 2000, no. 39/40, pp. 535—562.Google Scholar
  7. 7.
    Badenes, M.L. and Parfitt, D.E., Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation, Theor. Appl. Genet., 1995, vol. 90, pp. 1035—1041. CrossRefGoogle Scholar
  8. 8.
    Casas, A.M., Igartua, E., Balaguer, G., and Moreno, M.A., Genetic diversity of Prunus rootstocks analysed by RAPD markers, Euphytica, 1999, vol. 110, pp. 139—149.CrossRefGoogle Scholar
  9. 9.
    Downey, S.L. and Iezzoni, A.F., Polymorphic DNA markers in black cherry Prunus serotina are identified using sequences from sweet cherry, peach and sour, J. Am. Soc. Hort. Sci., 2000, vol. 125, no. 1, pp. 76—80.CrossRefGoogle Scholar
  10. 10.
    Sosinski, B., Gannavarapu, M., Hager, L.D., et al., Characterisation of microsatellite markers in peach Prunus persica (L.) Batsch., Theor. Appl. Genet., 2000, vol. 101, pp. 421—428. CrossRefGoogle Scholar
  11. 11.
    Dirlewanger, E., Cosson, P., Tavaud, M., et al., Development of microsatellite markers in peach Prunus persica (L.) Batsch. and their use in genetic diversity analysis in peach and sweet cherry Prunus avium L., Theor. Appl. Genet., 2002, vol. 105, no. 1, pp. 127—138. CrossRefGoogle Scholar
  12. 12.
    Decroocq, V., Hagen, L.S., Fave, M.-G., et al., Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simplesequence repeats, Mol. Breed., 2004, vol. 13, no. 2, pp. 135—142. CrossRefGoogle Scholar
  13. 13.
    Horvath, A., Balsemin, E., Barbot, J.-C., et al., Phenotypic variability and genetic structure in plum (Prunus domestica L.), cherry plum (P. cerasifera Ehrh.) and sloe (P. spinosa L.), Sci. Hortic., 2011, vol. 129, no. 2, pp. 283—293.CrossRefGoogle Scholar
  14. 14.
    Gharbi, O., Wunsch, A., and Rodrigo, J., Characterization of accessions of ‘Reine Claude Verte’ plum using Prunus SRR and phenotypic traits, Sci. Hortic., 2014, vol. 169, pp. 57—65. CrossRefGoogle Scholar
  15. 15.
    Urbanovich, O.Yu., Kuzmitskaya, P.V., and Kozlovskaya, Z.A., Genetic diversity of plum cultivars assessed using SSR markers, Dokl. Nats. Akad. Navuk Belarusi, 2014, no. 58(5). pp. 92—97.Google Scholar
  16. 16.
    Kazija, D.H., Jelačić, T., and Vujević, P., Plum germplasm in Croatia and neighboring countries assessed by microsatellites and DUS descriptors, Tree Genet. Genomes, 2014, vol. 10, no. 3, pp. 761—778.CrossRefGoogle Scholar
  17. 17.
    Sehic, J., Nybom, H., and Hjeltnes, S.H., Genetic diversity and structure of Nordic plum germplasm preserved ex situ and on-farm, Sci. Hortic., 2015, no. 190, pp. 195—202.Google Scholar
  18. 18.
    Stepanov, I.V., Suprun, I.I., and Lobodina, E.V., SSR polymorphism analysis in North Caucasian cultivars of European plum, Nauchn. Tr. Sev.-Kavk. Fed. Nauchn. Tsentr Sadovod., Vinograd. Vinodel., 2016, vol. 9, pp. 78—84.Google Scholar
  19. 19.
    Stepanov, I.V., Suprun, I.I., and Tokmakov, S.V., Genetic diversity of European plum cultivars bred at Maikop Experimental Station of VIR using SSR markers, in Mezhdunarodnyi sammit molodykh uchenykh (International Summit of Young Scientists) (Proc. Conf.), Krasnodar, 2016, pp. 193—197.Google Scholar
  20. 20.
    Murray, M.G. and Thompson, W.F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, no. 19, pp. 4321—4325.CrossRefGoogle Scholar
  21. 21.
    Dettori, M.T., Micali, S., and Giovinazzi, J., Mining microsatellites in the peach genome: development of new long‑core SSR markers for genetic analyses in five Prunus species, Springer Plus, 2015, vol. 4, pp. 337—340.CrossRefGoogle Scholar
  22. 22.
    Mnejja, M., Garcia-Mas, J., Howad, W., et al., Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond, Mol. Ecol. Notes, 2004, vol. 4, no. 2, pp. 163—166.CrossRefGoogle Scholar
  23. 23.
    Suprun, I.I., Stepanov, I.V., and Tokmakov, S.V., Testing of Prunus persica SSR markers for genotyping of European plum, Nauch. Zh. Kuban. Gos. Agrar. Univ., 2016, no. 124(10).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. I. Suprun
    • 1
    Email author
  • I. V. Stepanov
    • 1
  • S. V. Tokmakov
    • 1
  • G. V. Eremin
    • 2
  1. 1.North Caucasian Federal Scientific Center for Horticulture, Viticulture, and Wine-MakingKrasnodarRussia
  2. 2.Krymsk Experimental Breeding Station, Vavilov All-Russian Institute of Plant Genetic ResourcesKrymskRussia

Personalised recommendations