Russian Journal of Genetics

, Volume 55, Issue 1, pp 89–99 | Cite as

A New Case of Recombination between Nuclear and Mitochondrial Genomes in the Genus Calliope Gould, 1836 (Muscicapidae, Aves): The Hypothesis of Origin Calliope pectoralis Gould, 1837

  • L. N. SpiridonovaEmail author
  • O. P. Valchuk
  • Ya. A. Red’kin


For the first time we propose a hypothesis of hybrid origin of Calliope pectoralis from two species, C. calliope and C. obscura, based on the new molecular genetic data and phenotypic characters. We examined 80 samples of C. calliope and one sample of С. pectoralis tschebaiewi. We discovered that products of the cytochrome b gene, as well as three transport RNAs, ND6, and a control region (3.2 kb) were heterogeneous in 22 specimens of C. calliope. The result of cloning of these amplicons produced two clone variants: the cytochrome b gene of C. calliope and the nuclear pseudogene homologous to the cytochrome b gene of C. pectoralis (96% match). Computer assisted phylogenetic analysis of the connections between the cloned sequences for the mtDNA cytochrome b gene and its nuclear copies revealed a distribution into two clades: C. calliope and C. pectoralis. This can be explained by an intergenomic recombination event, namely, a transfer of C. calliope’s nuclear copy of the cytochrome b gene into a mitochondrial genome of a hybrid female that later became the founder of the C. pectoralis species. According to morphological features, the second species involved in hybridization with C. calliope was probably C. obscura, since it is the only species of the Calliope genus that has a black breast and black outer tail feathers with white bases similar to those of C. pectoralis.


interspecific hybridization NUMT mtDNA intergenomic recombination Calliope calliope C. obscura C. pectoralis 



  1. 1.
    Song, H., Buhay, J.E., Whiting, M.F., and Crandall, K.A., Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 13486—13491. CrossRefGoogle Scholar
  2. 2.
    Bensasson, D., Zhang, D.-X., Hartl, D.L., and Hewitt, G.M., Mitochondrial pseudogenes: evolution’s misplaced witnesses, Trends Ecol. Evol., 2001, vol. 16, pp. 314—321.CrossRefGoogle Scholar
  3. 3.
    Andrianov, B.V., Romanov, D.A., Gorelova, T.V., et al., Transfer of mitochondrial DNA to nuclear genome of cells of passaged cell line of Drosophila virilis, Russ. J. Genet., 2013, vol. 49, no. 6, pp. 685—689. CrossRefGoogle Scholar
  4. 4.
    Bernt, M., Braband, A., Schierwater, B., and Stadler, P.F., Genetic aspects of mitochondrial genome evolution, Mol. Phyl. Evol., 2013, vol. 69, pp. 328—338. CrossRefGoogle Scholar
  5. 5.
    Arctander, P., Comparison of a mitochondrial gene and a corresponding nuclear pseudogene, Proc. R. Soc. London, Ser. B, 1995, vol. B 262, pp. 13—19.Google Scholar
  6. 6.
    Zhang, D.-X. and Hewitt, G.M., Nuclear integrations: challenges for mitochondrial DNA markers, Trends Evol. Ecol., 1996, vol. 11, pp. 247—251.CrossRefGoogle Scholar
  7. 7.
    Triant, D.A. and DeWoody, J.A., The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics and phylogeography, J. Mamm., 2007, vol. 88, pp. 908—920.CrossRefGoogle Scholar
  8. 8.
    Grechko, V.V., The problems of molecular phylogenetics with the example of squamate reptiles: mitochondrial DNA markers, Mol. Biol. (Moscow), 2013, vol. 47, no. 1, pp. 55—74.CrossRefGoogle Scholar
  9. 9.
    Grzybowski, T., Malyarchuk, B.A., Czarny, J., et al., High level of mitochondrial DNA heteroplasmy in single hair roots: reanalysis and revision, Electrophoresis, 2003, vol. 24, pp. 1159—1165.CrossRefGoogle Scholar
  10. 10.
    Kraytsberg, Y., Schwartz, M., Brown, T.A., et al., Recombination of human mitochondrial DNA, Science, 2004, vol. 304, p. 981.CrossRefGoogle Scholar
  11. 11.
    Spiridonova, L.N., Red’kin, Ya.A., Valchuk, O.P., and Kryukov, A.P., Nuclear mtDNA pseudogenes as a source of new variants of the mtDNA cytochrome b haplotypes: a case study of Siberian rubythroat Luscinia calliope (Muscicapidae, Aves), Russ. J. Genet., 2016, vol. 52, no. 9, pp. 952—962. Scholar
  12. 12.
    Sangster, G., Alstrom, P., Forsmark, E., and Olsson, U., Multilocus phylogenetic analysis of Old World chats and flycatchers reveals extensive paraphyly at family, subfamily and genus level (Aves: Muscicapidae), Mol. Phylogenet. Evol., 2010, vol. 57, pp. 380—392. CrossRefGoogle Scholar
  13. 13.
    Alstrom, P., Song, G., Zhang, R., et al., Taxonomic status of blackthroat Calliope obscura and firethroat C. pectardens, Forktail, 2013, vol. 29, pp. 94—99.Google Scholar
  14. 14.
    Dickinson, E.C. and Christidis, L., The Howard and Moore Complete Checklist of the Birds of the World: Passerines, vol. 2, Eastbourne: Aves Press, 2014, 4th ed.Google Scholar
  15. 15.
    del Hoyo, J. and Collar, N.J., HBW and BirdLife International Illustrated Checklist of the Birds of the World, vol. 2: Passerines, Barcelona: Lynx, 2016.Google Scholar
  16. 16.
    Loskot, V.M. and Daletskaya, K.K., Plumages and size variation of the Himalayan rubythroat, Luscinia pectoralis (Gould, 1837) (Aves: Muscicapidae), Zoosyst. Ross., 2001, vol. 9, pp. 463—486.Google Scholar
  17. 17.
    Spiridonova, L.N., Valchuk, O.P., Red’kin, Ya.A., et al., Phylogeography and demographic history of Siberian rubythroat Luscinia calliope, Russ. J. Genet., 2017, vol. 53, no. 8, pp. 885—902. Scholar
  18. 18.
    Vaurie, Ch., The Birds of the Palearctic Fauna: A Systematic Reference. Order Passeriformes, London: Witherby, 1959.Google Scholar
  19. 19.
    Collar, N., Family Turdidae: Handbook of the Birds of the World, Cuckoo-Shrikes to Thrushes, Del Hoyo, J., Elliott, A., and Christie, D., Eds., Barcelona: Lynx, 2005, vol. 10, pp. 514—807.Google Scholar
  20. 20.
    Rasmussen, P.C. and Anderton, J.C., Birds of South Asia, in The Ripley Guide: 2. Attributes and Status, Washington D.C.: The Smithsonian Institution, 2012, 2nd ed.Google Scholar
  21. 21.
    Liu, Y., Chen, G., Huang, Q., et al., Species delimitation of the white-tailed rubythroat Calliope pectoralis complex (Aves, Turdidae) using an integrative taxonomic approach, J. Avian Biol., 2016, vol. 47, pp. 001—012.Google Scholar
  22. 22.
    Bonfield, J.K., Smith, K.F., and Staden, R., A new DNA sequence assembly program, Nucleic Acids Res., 1995, vol. 23, pp. 4992—4999.CrossRefGoogle Scholar
  23. 23.
    Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725—2729. CrossRefGoogle Scholar
  24. 24.
    Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452.CrossRefGoogle Scholar
  25. 25.
    Martin, D.P., Williamson, C., and Posada, D., RDP2: recombination detection and analysis from sequence alignments, Bioinformatics, 2005, vol. 21, no. 2, pp. 260—262.CrossRefGoogle Scholar
  26. 26.
    Pavlova, A., Rohwer, S., Drovetski, S.V., and Zink, R.M., Different post-Pleistocene histories of Eurasian parids, J. Hered., 2006, vol. 97, pp. 389—402.CrossRefGoogle Scholar
  27. 27.
    Haring, E., Gamauf, A., and Kryukov, A., Phylogeographic patterns in widespread corvid birds, Mol. Phyl. Evol., 2007, vol. 45, pp. 840—862.CrossRefGoogle Scholar
  28. 28.
    Dohms, K.M. and Burg, T.M., Molecular markers reveal limited population genetic structure in a North American corvid, Clark’s nutcracker (Nucifraga columbiana), PLoS One, 2013, vol. 8. e79621.CrossRefGoogle Scholar
  29. 29.
    Zink, R.M., Drovetski, S.V., Questiau, S., et al., Recent evolutionary history of the bluethroat (Luscinia svecica) across Eurasia, Mol. Ecol., 2003, vol. 12, pp. 3069—3075.CrossRefGoogle Scholar
  30. 30.
    Pavlova, A., Zink, R.M., Drovetski, S.V., et al., Phylogeographic patterns in Motacilla flava and M. citreola: species limits and population history, Auk, 2003, vol. 120, pp. 744—758.CrossRefGoogle Scholar
  31. 31.
    Zink, R.M., Pavlova, A., Drovetski, S., and Rohwer, S., Mitochondrial phylogeographies of five widespread Eurasian bird species, J. Ornithol., 2008, vol. 149, pp. 399—413.CrossRefGoogle Scholar
  32. 32.
    Drovetski, S.V., Zink, R.M., Ericson, P.G.P., and Fadeev, I.V., A multilocus study of pine grosbeak phylogeography supports the pattern of greater intercontinental divergence in Holarctic boreal forest birds than in birds inhabiting other high-latitude habitats, J. Biogeogr., 2010, vol. 37, pp. 696—706.CrossRefGoogle Scholar
  33. 33.
    Weber-Lotfi, F., Koulintchenko, M.V., Ibrahim, N., et al., Nucleic acid import into mitochondria: new insights into the translocation pathways, Biochim. Biophys. Acta, 2015, vol. 1853, pp. 3165—3181. CrossRefGoogle Scholar
  34. 34.
    Konstantinov, Yu.M., Ditrish, A., Veber-Lotfi, F., et al., DNA import into mitochondria, Biochemistry (Moscow), 2016, vol. 81, no. 10, pp. 1044—1056. Scholar
  35. 35.
    Lopez, J.V., Yuhki, N., Masuda, R., et al., Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat, J. Mol. Evol., 1994, vol. 39, pp. 174—190.Google Scholar
  36. 36.
    Randler, C., Avian hybridization, mixed pairing and female choice, Anim. Behav., 2002, vol. 63, no. 1, pp. 103—119.CrossRefGoogle Scholar
  37. 37.
    Lamichhaney, S., Han, F., Webster, M.T., et al., Rapid hybrid speciation in Darwin’s finches, Science, 2017.

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • L. N. Spiridonova
    • 1
    Email author
  • O. P. Valchuk
    • 1
  • Ya. A. Red’kin
    • 2
  1. 1.Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Zoological Museum, Moscow State UniversityMoscowRussia

Personalised recommendations