Advertisement

Russian Journal of Genetics

, Volume 55, Issue 1, pp 24–34 | Cite as

Transposable Elements in the Evolution of Gene Regulatory Networks

  • S. A. PirogovEmail author
  • O. G. Maksimenko
  • P. G. Georgiev
REVIEWS AND THEORETICAL ARTICLES
  • 6 Downloads

Abstract

Over the past decade, there has been an active study of the interactions between the population of transposable elements (TEs) and the rest of the genome. Many regulatory sequences of TEs have been used for different genes regulation and genome organization. These regulatory sequences can be transcription factor binding sites, enhancers, and insulators. TEs may contain promoters that can be domesticated during substitution of original gene promoters or during de novo formation of long noncoding RNAs. In addition, there are many examples of domestication of TE-encoded proteins, for example, transposases, proteases, and Gag proteins. This review highlights the role of TEs in the evolution of gene regulatory networks and the principles determining it.

Keywords:

transposable elements regulation of gene expression genome evolution evolution of complexity exaptation 

Notes

REFERENCES

  1. 1.
    Koonin, E.V., The Logic of Chance: The Nature and Origin of Biological Evolution, FT Press, 2011.Google Scholar
  2. 2.
    McShea, D.W., Functional complexity in organisms: parts as proxies, Biol. Philos., 2000, vol. 15, no. 5, pp. 641—668.  https://doi.org/10.1023/A:1006695908715 CrossRefGoogle Scholar
  3. 3.
    Adami, C., What is complexity?, BioEssays, 2002, vol. 24, no. 12, pp. 1085—1094.  https://doi.org/10.1002/bies.10192 CrossRefPubMedGoogle Scholar
  4. 4.
    Elliott, T.A. and Gregory, T.R., What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content, Philos. Trans. R. Soc., B, 2015, vol. 370, no. 1678, pp. 20140331.  https://doi.org/10.1098/rstb.2014.0331
  5. 5.
    Claverie, J.M., Gene number: what if there are only 30,000 human genes?, Science, 2001, vol. 291, no. 5507, pp. 1255—1257.  https://doi.org/10.1126/SCIENCE.1058969 CrossRefPubMedGoogle Scholar
  6. 6.
    Dunham, I., Kundaje, A., Aldred, S.F., et al., An integrated encyclopedia of DNA elements in the human genome, Nature, 2012, vol. 489, no. 7414, pp. 57—74.  https://doi.org/10.1038/nature11247 CrossRefGoogle Scholar
  7. 7.
    Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution, Cell, 2008, vol. 134, no. 1, pp. 25—36.  https://doi.org/10.1016/j.cell.2008.06.030 CrossRefPubMedGoogle Scholar
  8. 8.
    Lynch, V.J., A copy-and-paste gene regulatory network, Science, 2016, vol. 351, no. 6277, pp. 1029—1030.  https://doi.org/10.1126/science.aaf2977 CrossRefPubMedGoogle Scholar
  9. 9.
    Sundaram, V., Cheng, Y., Ma, Z., et al., Widespread contribution of transposable elements to the innovation of gene regulatory networks, Genome Res., 2014, vol. 24, no. 12, pp. 1963—1976.  https://doi.org/10.1101/gr.168872.113 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Doolittle, W.F., Is junk DNA bunk? A critique of ENCODE, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 14, pp. 5294—5300.  https://doi.org/10.1073/pnas.1221376110 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McShea, D.W. and Brandon, R.N., Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems, Chicago: Univ. Chicago Press, 2010.CrossRefGoogle Scholar
  12. 12.
    Pigliucci, M., Is evolvability evolvable?, Nat. Rev. Genet., 2008, vol. 9, no. 1, pp. 75—82.  https://doi.org/10.1038/nrg2278 CrossRefPubMedGoogle Scholar
  13. 13.
    Masel, J. and Trotter, M.V., Robustness and evolvability, Trends Genet., 2010, vol. 26, no. 9, pp. 406—414.  https://doi.org/10.1016/j.tig.2010.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wagner, A., Robustness and Evolvability in Living Systems, Princeton Univ. Press, 2007.Google Scholar
  15. 15.
    Koonin, E.V., Splendor and misery of adaptation, or the importance of neutral null for understanding evolution, BMC Biol., 2016, vol. 14, p. 114.  https://doi.org/10.1186/s12915-016-0338-2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fernández, A. and Lynch, M., Non-adaptive origins of interactome complexity, Nature, 2011, vol. 474, no. 7352, pp. 502—505.  https://doi.org/10.1038/nature09992 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lynch, M., The frailty of adaptive hypotheses for the origins of organismal complexity, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, suppl. 1, pp. 8597—8604.  https://doi.org/10.1073/pnas.0702207104 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wicker, T., Sabot, F., Hua-Van, A., et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 2007, vol. 8, no. 12, pp. 973—982.  https://doi.org/10.1038/nrg2165 CrossRefGoogle Scholar
  19. 19.
    Belshaw, R., Watson, J., Katzourakis, A., et al., Rate of recombinational deletion among human endogenous retroviruses, J. Virol., 2007, vol. 81, no. 17, pp. 9437—9442.  https://doi.org/10.1128/JVI.02216-06 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Feschotte, C. and Mouchès, C., Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon, Mol. Biol. Evol., 2000, vol. 17, no. 5, pp. 730—737.  https://doi.org/10.1093/oxfordjournals.molbev.a026351 CrossRefPubMedGoogle Scholar
  21. 21.
    Schnable, P.S., Ware, D., Fulton, R.S., et al., The B73 maize genome: complexity, diversity, and dynamics, Science, 2009, vol. 326, no. 5956, pp. 1112—1115.  https://doi.org/10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  22. 22.
    Lander, E.S., Linton, L.M., Birren, B., et al., Initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, no. 6822, pp. 860—921.  https://doi.org/10.1038/35057062 CrossRefGoogle Scholar
  23. 23.
    de Koning, A.P.J., Gu, W., Castoe, T., et al., Repetitive elements may comprise over two-thirds of the human genome, PLoS Genet., 2011, vol. 7, no. 12, p. e1002384.  https://doi.org/10.1371/journal.pgen.1002384 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brosius, J., The contribution of RNAs and retroposition to evolutionary novelties, Genetica, 2003, vol. 118, nos. 2—3, pp. 99—115.  https://doi.org/10.1023/A:1024141306559 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang, Y., Romanish, M.T., and Mager, D.L., Distributions of transposable elements reveal hazardous zones in mammalian introns, PLoS Comput. Biol., 2011, vol. 7, no. 5. e1002046.  https://doi.org/10.1371/journal.pcbi.1002046 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rogozin, I.B., Carmel, L., Csuros, M., and Koonin, E.V., Origin and evolution of spliceosomal introns, Biol. Direct., 2012, vol. 7, no. 1, p. 11.  https://doi.org/10.1186/1745-6150-7-11 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Piégu, B., Bire, S., Arensburger, P., and Bigot, Y., A survey of transposable element classification systems—a call for a fundamental update to meet the challenge of their diversity and complexity, Mol. Phylogenet. Evol., 2015, vol. 86, pp. 90—109.  https://doi.org/10.1016/j.ympev.2015.03.009 CrossRefPubMedGoogle Scholar
  28. 28.
    Huff, J.T., Zilberman, D., and Roy, S.W., Mechanism for DNA transposons to generate introns on genomic scales, Nature, 2016, vol. 538, no. 7626, pp. 533—536.  https://doi.org/10.1038/nature20110 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krull, M., Petrusma, M., Makalowski, W., et al., Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs), Genome Res., 2007, vol. 17, no. 8, pp. 1139—1145.  https://doi.org/10.1101/gr.6320607 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schmitz, J. and Brosius, J., Exonization of transposed elements: a challenge and opportunity for evolution, Biochimie, 2011, vol. 93, no. 11, pp. 1928—1934.  https://doi.org/10.1016/j.biochi.2011.07.014 CrossRefPubMedGoogle Scholar
  31. 31.
    Tang, W., Gunn, T.M., and McLaughlin, D., F et al. Secreted and membrane attractin result from alternative splicing of the human ATRN gene, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 11, pp. 6025—6030.  https://doi.org/10.1073/pnas.110139897 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee, J.Y., Ji, Z., and Tian, B., Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3'-end of genes, Nucleic Acids Res., 2008, vol. 36, no. 17, pp. 5581—5590.  https://doi.org/10.1093/nar/gkn540 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cowley, M., Oakey, R.J., Venables, P., et al., Transposable elements re-wire and fine-tune the transcriptome, PLoS Genet., 2013, vol. 9, no. 1. e1003234.  https://doi.org/10.1371/journal.pgen.1003234 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huda, A., Bowen, N.J., Conley, A.B., and Jordan, I.K., Epigenetic regulation of transposable element derived human gene promoters, Gene, 2011, vol. 475, pp. 39—48.  https://doi.org/10.1016/j.gene.2010.12.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Jordan, I.K., Rogozin, I.B., Glazko, G.V., and Koonin, E.V., Origin of a substantial fraction of human regulatory sequences from transposable elements, Trends Genet., 2003, vol. 19, no. 2, pp. 68—72.  https://doi.org/10.1016/S0168-9525(02)00006-9 CrossRefPubMedGoogle Scholar
  36. 36.
    Morgan, H.D., Sutherland, H.G., Martin, D.I., and Whitelaw, E., Epigenetic inheritance at the agouti locus in the mouse, Nat. Genet., 1999, vol. 23, no. 3, pp. 314—318.  https://doi.org/10.1038/15490 CrossRefPubMedGoogle Scholar
  37. 37.
    Faulkner, G.J., Kimura, Y., Daub, C.O., et al., The regulated retrotransposon transcriptome of mammalian cells, Nat. Genet., 2009, vol. 41, no. 5, pp. 563—571.  https://doi.org/10.1038/ng.368 CrossRefPubMedGoogle Scholar
  38. 38.
    Thompson, P.J., Macfarlan, T.S., and Lorincz, M.C., Long Terminal Repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire, Mol. Cell., 2016, vol. 62, no. 5, pp. 766—776.  https://doi.org/10.1016/j.molcel.2016.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eickbush, T.H. and Malik, H.S., Origins and evolution of retrotransposons, in Mobile DNA II, Washington, DC: American Society for Microbiology, 2002, P. 1111—1144.  https://doi.org/10.1128/9781555817954.ch49 Google Scholar
  40. 40.
    Katzourakis, A. and Gifford, R.J., Endogenous viral elements in animal genomes, PLoS Genet., 2010, vol. 6, no. 11. e1001191.  https://doi.org/10.1371/journal.pgen.1001191 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kramerov, D.A. and Vassetzky, N.S., Origin and evolution of SINEs in eukaryotic genomes, Heredity, 2011, vol. 107, no. 6, pp. 487—495.  https://doi.org/10.1038/hdy.2011.43 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tollis, M. and Boissinot, S., The evolutionary dynamics of transposable elements in eukaryote genomes, Genome Dyn., 2012, vol. 7, pp. 68—91.  https://doi.org/10.1159/000337126 CrossRefPubMedGoogle Scholar
  43. 43.
    Lynch, M., The Origins of Genome Architecture, Sinauer Associates, 2007.Google Scholar
  44. 44.
    Lane, N. and Martin, W., The energetics of genome complexity, Nature, 2010, vol. 467, no. 7318, pp. 929—934.  https://doi.org/10.1038/nature09486 CrossRefPubMedGoogle Scholar
  45. 45.
    Le Rouzic, A., Boutin, T.S., and Capy, P., Long-term evolution of transposable elements, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 49, pp. 19375—19380.  https://doi.org/10.1073/pnas.0705238104 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hua-Van, A., Le Rouzic, A., Boutin, T.S., et al., The struggle for life of the genome’s selfish architects, Biol. Direct., 2011, vol. 6, no. 1, p. 19.  https://doi.org/10.1186/1745-6150-6-19 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lisch, D., How important are transposons for plant evolution?, Nat. Rev. Genet., 2012, vol. 14, no. 1, pp. 49—61.  https://doi.org/10.1038/nrg3374 CrossRefGoogle Scholar
  48. 48.
    Petrov, D.A., Fiston-Lavier, A.-S., Gonzalez, J., et al., Population genomics of transposable elements in Drosophila melanogaster, Annu. Rev. Genet., 2014, vol. 48, no. 5, pp. 561—581.  https://doi.org/10.1093/molbev/msq337 CrossRefPubMedGoogle Scholar
  49. 49.
    Adrion, J.R., Song, M.J., Schrider, D.R., et al., Genome-wide estimates of transposable element insertion and deletion rates in Drosophila melanogaster, Genome Biol. Evol., 2017, vol. 9, no. 5, pp. 1329—1340.  https://doi.org/10.1093/gbe/evx050 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Luan, D.D., Korman, M.H., Jakubczak, J.L., and Eickbush, T.H., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition, Cell, 1993, vol. 72, no. 4, pp. 595—605.CrossRefPubMedGoogle Scholar
  51. 51.
    Zou, S. and Voytas, D.F., Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 7412—7416.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Levin, H.L. and Moran, J.V., Dynamic interactions between transposable elements and their hosts, Nat. Rev. Genet., 2011, vol. 12, no. 9, pp. 615—627.  https://doi.org/10.1038/nrg3030 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chuong, E.B., Elde, N.C., and Feschotte, C., Regulatory activities of transposable elements: from conflicts to benefits, Nat. Rev. Genet., 2016, vol. 18, no. 2, pp. 71—86.  https://doi.org/10.1038/nrg.2016.139 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Qi, X. and Sandmeyer, S., In vitro targeting of strand transfer by the Ty3 retroelement integrase, J. Biol. Chem., 2012, vol. 287, no. 22, pp. 18589—18595.  https://doi.org/10.1074/jbc.M111.326025 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sultana, T., Zamborlini, A., Cristofari, G., and Lesage, P., Integration site selection by retroviruses and transposable elements in eukaryotes, Nat. Rev. Genet., 2017, vol. 18, no. 5, pp. 292—308.  https://doi.org/10.1038/nrg.2017.7 CrossRefPubMedGoogle Scholar
  56. 56.
    Aravin, A.A., Sachidanandam, R., Bourc’his, D., et al., A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice, Mol. Cell, 2008, vol. 31, no. 6, pp. 785—799.  https://doi.org/10.1016/j.molcel.2008.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Elsässer, S.J., Noh, K.-M., Diaz, N., et al., Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells, Nature, 2015, vol. 522, no. 7555, pp. 240—244.  https://doi.org/10.1038/nature14345 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Barau, J., Teissandier, A., Zamudio, N., et al., The DNA methyltransferase DNMT3C protects male germ cells from transposon activity, Science, 2016, vol. 354, no. 6314, pp. 909—912.CrossRefPubMedGoogle Scholar
  59. 59.
    Haig, D., Transposable elements: self-seekers of the germline, team-players of the soma, BioEssays, 2016, vol. 38, no. 11, pp. 1158—1166.  https://doi.org/10.1002/bies.201600125 CrossRefPubMedGoogle Scholar
  60. 60.
    Grow, E.J., Flynn, R.A., Chavez, S.L., et al., Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells, Nature, 2015, vol. 522, no. 7555, pp. 221—225.  https://doi.org/10.1038/nature14308 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Izsvák, Z., Wang, J., Singh, M., et al., Pluripotency and the endogenous retrovirus HERVH: conflict or serendipity?, BioEssays, 2016, vol. 38, no. 1, pp. 109—117.  https://doi.org/10.1002/bies.201500096 CrossRefPubMedGoogle Scholar
  62. 62.
    Jacobs, F.M.J., Greenberg, D., Nguyen, N., et al., An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons, Nature, 2014, vol. 516, no. 7530, pp. 242—245.  https://doi.org/10.1038/nature13760 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cam, H.P., Noma, K., Ebina H., et al., Host genome surveillance for retrotransposons by transposon-derived proteins, Nature, 2008, vol. 451, no. 7177, pp. 431—436.  https://doi.org/10.1038/nature06499 CrossRefPubMedGoogle Scholar
  64. 64.
    Piacentini, L., Fanti, L., Specchia, V., et al., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, no. 4, pp. 345—354.  https://doi.org/10.1007/s00412-014-0464-y CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Oliver, K.R. and Greene, W.K., Transposable elements: powerful facilitators of evolution, BioEssays, 2009, vol. 31, no. 7, pp. 703—714.  https://doi.org/10.1002/bies.200800219 CrossRefPubMedGoogle Scholar
  66. 66.
    Kunarso, G., Chia, N.-Y., Jeyakani, J., et al., Transposable elements have rewired the core regulatory network of human embryonic stem cells, Nat. Genet., 2010, vol. 42, no. 7, pp. 631—634.  https://doi.org/10.1038/ng.600 CrossRefPubMedGoogle Scholar
  67. 67.
    Bourque, G., Leong, B., Vega, V.B., et al., Evolution of the mammalian transcription factor binding repertoire via transposable elements, Genome Res., 2008, vol. 18, no. 11, pp. 1752—1762.  https://doi.org/10.1101/gr.080663.108 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Thornburg, B.G., Gotea, V., Makałowski, W. Transposable elements as a significant source of transcription regulating signals, Gene, 2006, vol. 365, pp. 104—110.  https://doi.org/10.1016/j.gene.2005.09.036 CrossRefPubMedGoogle Scholar
  69. 69.
    Sundaram, V., Cheng, Y., Ma, Z., et al., Widespread contribution of transposable elements to the innovation of gene regulatory networks, Genome Res., 2014, vol. 24, no. 12, pp. 1963—1976.  https://doi.org/10.1101/gr.168872.113 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wang, T., Zeng, J., Lowe, C.B., et al., Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 47, pp. 18613—18618.  https://doi.org/10.1073/pnas.0703637104 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    de Souza, F.S.J., Franchini, L.F., and Rubinstein, M., Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong?, Mol. Biol. Evol., 2013, vol. 30, no. 6, pp. 1239—1251.  https://doi.org/10.1093/molbev/mst045 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schmidt, D., Schwalie, P.C., Wilson, M.D., et al., Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages, Cell, 2012, vol. 148, nos. 1—2, pp. 335—348.  https://doi.org/10.1016/j.cell.2011.11.058 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lunyak, V.V., Prefontaine, G.G., Nunez, E., et al., Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis, Science, 2007, vol. 317, no. 5835, pp. 248—251.  https://doi.org/10.1126/science.1140871 CrossRefPubMedGoogle Scholar
  74. 74.
    Bire, S., Casteret, S., Piégu, B., et al., Mariner transposons contain a silencer: possible role of the polycomb repressive complex 2, PLoS Genet., 2016, vol. 12, no. 3. e1005902.  https://doi.org/10.1371/journal.pgen.1005902 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang, J., Vicente-García, C., Seruggia, D., et al., MIR retrotransposon sequences provide insulators to the human genome, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 32, pp. E4428—E4437.  https://doi.org/10.1073/pnas.1507253112 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hollister, J.D. and Gaut, B.S., Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression, Genome Res., 2009, vol. 19, no. 8, pp. 1419—1428.  https://doi.org/10.1101/gr.091678.109 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lisch, D. and Bennetzen, J.L., Transposable element origins of epigenetic gene regulation, Curr. Opin. Plant Biol., 2011, vol. 14, no. 2, pp. 156—161.  https://doi.org/10.1016/j.pbi.2011.01.003 CrossRefPubMedGoogle Scholar
  78. 78.
    Feschotte, C., Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 397—405.  https://doi.org/10.1038/nrg2337 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Cohen, C.J., Lock, W.M., and Mager, D.L., Endogenous retroviral LTRs as promoters for human genes: a critical assessment, Gene, 2009, vol. 448, no. 2, pp. 105—114.  https://doi.org/10.1016/j.gene.2009.06.020 CrossRefPubMedGoogle Scholar
  80. 80.
    Simonti, C.N., Pavličev, M., and Capra, J.A., Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints, Mol. Biol. Evol., 2017, vol. 34, no. 11, pp. 2856—2869.  https://doi.org/10.1093/molbev/msx219 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Baptiste, B.A., Ananda, G., Strubczewski, N., et al., Mature microsatellites: mechanisms underlying dinucleotide microsatellite mutational biases in human cells, G3 (Bethesda), 2013, vol. 3, no. 3, pp. 451—463.  https://doi.org/10.1534/g3.112.005173 CrossRefPubMedGoogle Scholar
  82. 82.
    Zemojtel, T., Kielbasa, S.M., Arndt, P.F., et al., CpG deamination creates transcription factor-binding sites with high efficiency, Genome Biol. Evol., 2011, vol. 3, pp. 1304—1311.  https://doi.org/10.1093/gbe/evr107 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kuzu, G., Kaye, E.G., Chery, J., et al., Expansion of GA dinucleotide repeats increases the density of CLAMP binding sites on the X-chromosome to promote Drosophila dosage compensation, PLoS Genet., 2016, vol. 12, no. 7. e1006120.  https://doi.org/10.1371/journal.pgen.1006120 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rebollo, R., Romanish, M.T., and Mager, D.L., Transposable elements: an abundant and natural source of regulatory sequences for host genes, Annu. Rev. Genet., 2011, vol. 46, no. 1, pp. 21—42.  https://doi.org/10.1146/annurev-genet-110711-155621 CrossRefGoogle Scholar
  85. 85.
    Koonin, E.V. and Wolf, Y.I., Constraints and plasticity in genome and molecular-phenome evolution, Nat. Rev. Genet., 2010, vol. 11, no. 7, pp. 487—498.  https://doi.org/10.1038/nrg2810 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Negi, P., Rai, A.N., and Suprasanna, P., Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response, Front. Plant Sci., 2016, vol. 7, no. 1448.  https://doi.org/10.3389/FPLS.2016.01448
  87. 87.
    Dubin, M.J., Mittelsten Scheid, O., and Becker, C., Transposons: a blessing curse, Curr. Opin. Plant Biol., 2018, vol. 42, pp. 23—29.  https://doi.org/10.1016/J.PBI.2018.01.003 CrossRefPubMedGoogle Scholar
  88. 88.
    Nowick, K., Hamilton, A.T., Zhang, H., and Stubbs, L., Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes, Mol. Biol. Evol., 2010, vol. 27, no. 11, pp. 2606—2617.  https://doi.org/10.1093/molbev/msq157 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yang, P., Wang, Y., and Macfarlan, T.S., The role of KRAB-ZFPs in transposable element repression and mammalian evolution, Trends Genet., 2017, vol. 33, no. 11, pp. 871—881.  https://doi.org/10.1016/j.tig.2017.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ecco, G., Cassano, M., Kauzlaric, A., et al., Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues, Dev. Cell, 2016, vol. 36, no. 6, pp. 611—623.  https://doi.org/10.1016/j.devcel.2016.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gifford, W.D., Pfaff, S.L., and Macfarlan, T.S., Transposable elements as genetic regulatory substrates in early development, Trends Cell Biol., 2013, vol. 23, no. 5, pp. 218—226.  https://doi.org/10.1016/j.tcb.2013.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Friedli, M. and Trono, D., The developmental control of transposable elements and the evolution of higher species, Annu. Rev. Cell Dev. Biol., 2015, vol. 31, no. 1, pp. 429—451.  https://doi.org/10.1146/annurev-cellbio-100814-125514 CrossRefPubMedGoogle Scholar
  93. 93.
    Thomas, J.H. and Schneider, S., Coevolution of retroelements and tandem zinc finger genes, Genome Res., 2011, vol. 21, no. 11, pp. 1800—1812.  https://doi.org/10.1101/gr.121749.111 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Blumenstiel, J.P., Evolutionary dynamics of transposable elements in a small RNA world, Trends Genet., 2011, vol. 27, no. 1, pp. 23—31.  https://doi.org/10.1016/j.tig.2010.10.003 CrossRefPubMedGoogle Scholar
  95. 95.
    Creasey, K.M., Zhai, J., Borges, F., et al., miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis, Nature, 2014, vol. 508, no. 7496, pp. 411—415.  https://doi.org/10.1038/nature13069 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    McCue, A.D. and Slotkin, R.K., Transposable element small RNAs as regulators of gene expression, Trends Genet., 2012, vol. 28, no. 12, pp. 616—623.  https://doi.org/10.1016/j.tig.2012.09.001 CrossRefPubMedGoogle Scholar
  97. 97.
    Chuong, E.B., Elde, N.C., and Feschotte, C., Regulatory activities of transposable elements: from conflicts to benefits, Nat. Rev. Genet., 2016, vol. 18, no. 2, pp. 71—86.  https://doi.org/10.1038/nrg.2016.139 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Göke, J. and Ng, H.H., CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome, EMBO Rep., 2016, vol. 17, no. 8. e201642743.  https://doi.org/10.15252/embr.201642743 CrossRefGoogle Scholar
  99. 99.
    Chuong, E.B., Elde, N.C., and Feschotte, C., Regulatory evolution of innate immunity through co-option of endogenous retroviruses, Science, 2016, vol. 351, no. 6277, pp. 1083—1087.  https://doi.org/10.1126/science.aad5497 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Feschotte, C. and Gilbert, C., Endogenous viruses: insights into viral evolution and impact on host biology, Nat. Rev. Genet., 2012, vol. 13, no. 4, pp. 283—296.  https://doi.org/10.1038/nrg3199 CrossRefPubMedGoogle Scholar
  101. 101.
    Ge, S.X., Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development, BMC Genomics, 2017, vol. 18, no. 1, p. 200.  https://doi.org/10.1186/s12864-017-3566-0 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Koonin, E.V., The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?, Biol. Direct., 2006, vol. 1, no. 1, p. 22.  https://doi.org/10.1186/1745-6150-1-22 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Koonin, E.V., Viruses and mobile elements as drivers of evolutionary transitions, Philos. Trans. R. Soc., B, 2016, vol. 371, no. 1701, p. 20150442.  https://doi.org/10.1098/rstb.2015.0442
  104. 104.
    Jurka, J., Bao, W., Kojima, K.K., et al., Distinct groups of repetitive families preserved in mammals correspond to different periods of regulatory innovations in vertebrates, Biol. Direct., 2012, vol. 7, p. 36.  https://doi.org/10.1186/1745-6150-7-36 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Imbeault, M., Helleboid, P.-Y., and Trono, D., KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks, Nature, 2017, vol. 543, no. 7646, pp. 550—554.  https://doi.org/10.1038/nature21683 CrossRefPubMedGoogle Scholar
  106. 106.
    Albertin, C.B., Simakov, O., Mitros, T., et al., The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 2015, vol. 524, no. 7564, pp. 220—224.  https://doi.org/10.1038/nature14668 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Muotri, A.R., Chu, V.T., Marchetto, M.C.N., et al., Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition, Nature, 2005, vol. 435, no. 7044, pp. 903—910.  https://doi.org/10.1038/nature03663 CrossRefPubMedGoogle Scholar
  108. 108.
    Perrat, P.N., DasGupta, S., Wang, J., et al., Transposition-driven genomic heterogeneity in the Drosophila brain, Science, 2013, vol. 340, no. 6128, pp. 91—95.  https://doi.org/10.1126/science.1231965 CrossRefPubMedGoogle Scholar
  109. 109.
    Rajasethupathy, P., Antonov, I., Sheridan, R., et al., A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity, Cell, 2012, vol. 149, no. 3, pp. 693—707.  https://doi.org/10.1016/j.cell.2012.02.057 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Nandi, S., Chandramohan, D., Fioriti, L., et al., Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 45, pp. 12697—12702.  https://doi.org/10.1073/pnas.1609287113 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Zhao, J., Sun, B.K., Erwin, J.A., et al., Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome, Science, 2008, vol. 322, no. 5902, pp. 750—756.  https://doi.org/10.1126/science.1163045 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Elisaphenko, E.A., Kolesnikov, N.N., Shevchenko, A.I., et al., A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements, PLoS One, 2008, vol. 3, no. 6. e2521.  https://doi.org/10.1371/journal.pone.0002521 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Ellison, C.E. and Bachtrog, D., Dosage compensation via transposable element mediated rewiring of a regulatory network, Science, 2013, vol. 342, no. 6160, pp. 846—850.  https://doi.org/10.1126/science.1239552 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Kannan, S., Chernikova, D., Rogozin, I.B., et al., Transposable element insertions in long intergenic non-coding RNA genes, Front. Bioeng. Biotechnol., 2015, vol. 3, no. 71.  https://doi.org/10.3389/fbioe.2015.00071
  115. 115.
    Kelley, D. and Rinn, J., Transposable elements reveal a stem cell-specific class of long noncoding RNAs, Genome Biol., 2012, vol. 13, no. 11, p. R107.  https://doi.org/10.1186/gb-2012-13-11-r107 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Durruthy-Durruthy, J., Sebastiano, V., Wossidlo, M., et al., The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming, Nat. Genet., 2015, vol. 48, no. 1, pp. 44—52.  https://doi.org/10.1038/ng.3449 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Piriyapongsa, J. and Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements, PLoS One, 2007, vol. 2, no. 2. e203.  https://doi.org/10.1371/journal.pone.0000203 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959—976.  https://doi.org/10.1261/rna.044560.114 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Liang, D. and Wilusz, J.E., Short intronic repeat sequences facilitate circular RNA production, Genes Dev., 2014, vol. 28, no. 20, pp. 2233—2247.  https://doi.org/10.1101/gad.251926.114 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Qu, S., Zhong, Y., Shang, R., et al., The emerging landscape of circular RNA in life processes, RNA Biol., 2016, vol. 14, no. 8, pp. 992—999.  https://doi.org/10.1080/15476286.2016.1220473 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Göke, J., Lu, X., Chan, Y.-S., et al., Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells, Cell Stem Cell., 2015, vol. 16, no. 2, pp. 135—141.  https://doi.org/10.1016/j.stem.2015.01.005 CrossRefPubMedGoogle Scholar
  122. 122.
    Loewer, S., Cabili, M.N., Guttman, M., et al., Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells, Nat. Genet., 2010, vol. 42, no. 12, pp. 1113—1117.  https://doi.org/10.1038/ng.710 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, no. 4, pp. 423—425.  https://doi.org/10.1038/nsmb.2799 CrossRefPubMedGoogle Scholar
  124. 124.
    Rinn, J.L. and Chang, H.Y., Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 2012, vol. 81, pp. 145—166.  https://doi.org/10.1146/annurev-biochem-051410-092902 CrossRefPubMedGoogle Scholar
  125. 125.
    Cannavò, E., Khoueiry, P., Garfield, D.A., et al., Shadow enhancers are pervasive features of developmental regulatory networks, Curr. Biol., 2016, vol. 26, no. 1, pp. 38—51.  https://doi.org/10.1016/j.cub.2015.11.034 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Haerty, W., Ponting, C.P., Meader, S., et al., Mutations within lncRNAs are effectively selected against in fruit fly but not in human, Genome Biol., 2013, vol. 14, no. 5, p. R49.  https://doi.org/10.1186/gb-2013-14-5-r49 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Roth, D.B. and Craig, N.L., VDJ recombination: a transposase goes to work, Cell, 1998, vol. 94, no. 4, pp. 411—414.CrossRefPubMedGoogle Scholar
  128. 128.
    Joly-Lopez, Z., Hoen, D.R., Blanchette, M., et al., Phylogenetic and genomic analyses resolve the origin of important plant genes derived from transposable elements, Mol. Biol. Evol., 2016, vol. 33, no. 8, pp. 1937—1956.  https://doi.org/10.1093/molbev/msw067 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Volff, J.-N., Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes, BioEssays, 2006, vol. 28, no. 9, pp. 913—922.  https://doi.org/10.1002/bies.20452 CrossRefPubMedGoogle Scholar
  130. 130.
    Naville, M., Warren, I.A., Haftek-Terreau, Z., et al., Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates, Clin. Microbiol. Infect., 2016, vol. 22, no. 4, pp. 312—323.  https://doi.org/10.1016/j.cmi.2016.02.001 CrossRefPubMedGoogle Scholar
  131. 131.
    Ikeda, Y., Pélissier, T., Bourguet, P., et al., Arabidopsis proteins with a transposon-related domain act in gene silencing, Nat. Commun., 2017, vol. 8, p. 15122.  https://doi.org/10.1038/ncomms15122 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Aziz, R.K., Breitbart, M., and Edwards, R.A., Transposases are the most abundant, most ubiquitous genes in nature, Nucleic Acids Res., 2010, vol. 38, no. 13, pp. 4207—4217.  https://doi.org/10.1093/nar/gkq140 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Kapusta, A., Suh, A., and Feschotte, C., Dynamics of genome size evolution in birds and mammals, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 8, pp. E1460—E1469.  https://doi.org/10.1073/pnas.1616702114 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Wendel, J.F., Jackson, S.A., Meyers, B.C., and Wing, R.A., Evolution of plant genome architecture, Genome Biol., 2016, vol. 17, no. 1, p. 37.  https://doi.org/10.1186/s13059-016-0908-1 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Vicient, C.M. and Casacuberta, J.M., Impact of transposable elements on polyploid plant genomes, Ann. Bot., 2017, vol. 120, no. 2, pp. 195—207.  https://doi.org/10.1093/aob/mcx078 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Wagner, G.P. and Altenberg, L., Perspective: complex adaptations and the evolution of evolvability, Evolution (New York), 1996, vol. 50, no. 3, p. 967.  https://doi.org/10.2307/2410639 CrossRefPubMedGoogle Scholar
  137. 137.
    Stoltzfus, A., On the possibility of constructive neutral evolution, J. Mol. Evol., 1999, vol. 49, no. 2, pp. 169—181.  https://doi.org/10.1007/PL00006540 CrossRefPubMedGoogle Scholar
  138. 138.
    Speijer, D., Does constructive neutral evolution play an important role in the origin of cellular complexity?, BioEssays, 2011, vol. 33, no. 5, pp. 344—349.  https://doi.org/10.1002/bies.201100010 CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. A. Pirogov
    • 1
    Email author
  • O. G. Maksimenko
    • 1
  • P. G. Georgiev
    • 1
  1. 1.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations