Advertisement

Russian Journal of Genetics

, Volume 55, Issue 1, pp 10–23 | Cite as

Homologous Robertsonian Translocations: Spectrum, Sex Ratios, and Reproductive Risks

  • N. V. KovalevaEmail author
REVIEWS AND THEORETICAL ARTICLES
  • 5 Downloads

Abstract

Robertsonian translocations/isochromosomes formed by homologous acrocentric chromosomes are rare, and consequently their epidemiology has not been well investigated. This study, based on the analysis of published data including systematic studies of patients with reproductive disorders and individual reports on carriers of homologous translocation (HT), was conducted to determine the major epidemiological characteristics of HT. 10-fold differences were found between couples with infertility and couples with miscarriages, both in the frequency of HT carriers (0.03 and 0.45‰, correspondingly) and in their proportion of the total number of robertsonian translocation carriers (0.9 and 9%, correspondingly), p < 0.005. In patients with an apparent male infertility factor, these rates are 0.21‰ and 3%. In the group of males from couples with miscarriages (although about half of them are partners of women with female factor of reproductive disorder), rates of 0.36‰ and 10.5% were observed, p < 0.05. Among all HT carriers, those with HT of chromosomes 13 and 22 are found more frequently. For carriers of HT of chromosomes 13, 14, 15 and 21, female predominance was typical with the average sex ratio (SR) of 0.36 (22♂/61♀). Among the carriers of chromosome 22 HT, there was no female predominance, SR = 1.18 (13♂/11♀) the difference with other acrocentrics is statistically significant, p < 0.05. Analysis of reports on individual cases showed that only two out of 22 male HT carriers, were tested for infertility. One of them had a cell line with unbalanced HT, and for the other patient, the researchers found no reason to link the impairment of spermatogenesis with the presence of HT. Thus, in the majority of male HT carriers, spermatogenesis was not impaired. It is suggested that the disturbance of spermatogenesis in some cases is due to gonadal mosaicism for translocation trisomy resulting from incomplete correction of the original translocation trisomy. There are some published reports on healthy offspring with an inherited a parental balanced HT and on offspring with normal karyotypes born to apparently non mosaic HT carriers. Hence, it is possible to consider the probability of having healthy offspring for HT carriers as not zero, therefore references to the algorithms for the patients’ comprehensive examination and appropriate counseling are given.

Keywords:

homologous Robertsonian translocations/isochromosomes non-homologous Robertsonian translocations infertility miscarriage uniparental disomy mosaicism sex ratio 

REFERENCES

  1. 1.
    Gardner, R.J.M. and Sutherland, G.R., Chromosome Abnormalities and Genetic Counseling, Oxford: Oxford Univ. Press, 1989, pp. 54—64.Google Scholar
  2. 2.
    Kovaleva N.V., Examination of rates and spectrums of Robertsonian translocations in the general population and in patients with reproductive disorders, Russ. J. Genet., 2018, vol. 54, no. 4, pp. 489—493.CrossRefGoogle Scholar
  3. 3.
    Kovaleva, N.V. and Shaffer, L.G., Under-ascertainment of mosaic carriers of balanced homologous acrocentric translocations and isochromosomes, Am. J. Med. Genet., 2003, vol. 121A, pp. 180—187.  https://doi.org/10.1002/ajmg.a.20156 CrossRefPubMedGoogle Scholar
  4. 4.
    Artini, P.G., Papini, F., Ruggiero, M., et al., Genetic screening in Italian infertile couples undergoing intrauterine insemination and in vitro fertilization techniques: a multicentric study, Gynecol. Endocrinol., 2011, vol. 27, pp. 453—457.  https://doi.org/10.3109/09513590.2011.579207 CrossRefPubMedGoogle Scholar
  5. 5.
    Clementini, E., Palka, C., Iezzi, I., et al., Prevalence of chromosomal abnormalities in 2078 infertile couples referred for assisted reproductive techniques, Hum. Reprod., 2005, vol. 20, pp. 437—442.  https://doi.org/10.1093/humrep/deh626 CrossRefPubMedGoogle Scholar
  6. 6.
    Gada Saxena, S., Desai, K., Shawale, L., et al., Chromosomal aberrations in 2000 couples of Indian ethnicity with reproductive failure, Reprod. Biomed. Online, 2012, vol. 25, pp. 209—218.  https://doi.org/10.1016/j.rbmo.2012.04.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Hens, L., Bonduelle, M., Liebaers, I., et al., Chromosome aberrations in 500 couples referred for in vitro fertilization or related fertility treatment, Hum. Reprod., 1988, vol. 3, pp. 451—457.CrossRefPubMedGoogle Scholar
  8. 8.
    Kayed, H.F., Mansour, R.T., Aboulghar, M.A., et al., Screening for chromosomal abnormalities in 2650 infertile couples undergoing ICSI, Reprod. Biomed. Online, 2006, vol. 12, pp. 359—370.CrossRefPubMedGoogle Scholar
  9. 9.
    Kumar, M., Thatai, A., and Chapadgaonkar, S.S., A retrospective cytogenetic study of chromosomal abnormalities in infertile couples of Italian origin, Pharmacia Lett., 2017, vol. 9, pp. 44—56.Google Scholar
  10. 10.
    Marchina, E., Imperadori, L., Speziani, M., et al., Chromosome abnormalities and Y microdeletions in infertile Italian couples referred for assisted reproductive technique, Sex. Dev., 2007, vol. 1, pp. 347—352.  https://doi.org/10.1159/000111766 CrossRefPubMedGoogle Scholar
  11. 11.
    Mau, U.A., Backert, I.T., Kaiser, P., and Kiesel, L., Chromosomal findings in 150 couples referred for genetic counselling prior to intracytoplasmic sperm injection, Hum. Reprod., 1997, vol. 12, pp. 930—937.CrossRefPubMedGoogle Scholar
  12. 12.
    Meschede, D., Lemcke, B., Exeler, J.R., et al., Chromosome abnormalities in 447 couples undergoing intracytoplasmic sperm injection–prevalence, types, sex distribution and reproductive relevance, Hum. Reprod., 1998. vol. 13, pp. 576—582.CrossRefPubMedGoogle Scholar
  13. 13.
    Pauer, H.U., Hinney, B., Michelmann, H.W., et al., Relevance of genetic counselling in couples prior to intracytoplasmic sperm injection, Hum. Reprod., 1997, vol. 12, pp. 1909—1912.CrossRefPubMedGoogle Scholar
  14. 14.
    Peschka, B., Leygraaf, J., Van der Ven, K., et al., Type and frequency of chromosome aberrations in 781 couples undergoing intracytoplasmic sperm injection, Hum. Reprod., 1999, vol. 14, pp. 2257—2263.CrossRefPubMedGoogle Scholar
  15. 15.
    Riccaboni, A., Lalatta, F., Caliari, I., et al., Genetic screening in 2,710 infertile candidate couples for assisted reproductive techniques: results of application of Italian guidelines for the appropriate use of genetic tests, Fertil. Steril., 2008, vol. 89, pp. 800—808.  https://doi.org/10.1016/j.fertnstert.2007.04.032 CrossRefPubMedGoogle Scholar
  16. 16.
    Rosenbusch, B., Somatic chromosomal abnormalities in couples undergoing infertility treatment by intracytoplasmic sperm injection, J. Genet., 2010, vol. 89, pp. 105—108.CrossRefPubMedGoogle Scholar
  17. 17.
    Scholtes, M.C.W., Behrend, C., Dietzel-Dahmen, J., et al., Chromosomal aberrations in couples undergoing intracytoplasmic sperm injection: influence on implantation and ongoing pregnancy rate, Fertil. Steril., 1998, vol. 70, pp. 933—937.CrossRefPubMedGoogle Scholar
  18. 18.
    Testart, J., Gautier, E., Brani, C., et al., Intracytoplasmic sperm injection in infertile patients with structural chromosome abnormalities, Hum. Reprod., 1996, vol. 11, pp. 2609—2612.CrossRefPubMedGoogle Scholar
  19. 19.
    Tiboni, G.M., Verna, I., Giampietro, F., et al., Cytogenetic findings and reproductive outcome of infertile couples referred to an assisted reproduction program, Gynecol. Endocrinol., 2011, vol. 27, pp. 669—674.  https://doi.org/10.3109/09513590.2010.533799 CrossRefPubMedGoogle Scholar
  20. 20.
    Al-Hussain, M., Al-Nuaim, L., Abu, TalibZ., and Zaki, O.K., Cytogenetic study in cases with recurrent abortion in Saudi Arabia, Ann. Saudi Med., 2000, vol. 20, pp. 233—236.CrossRefPubMedGoogle Scholar
  21. 21.
    Bourrouillou, G., Colombies, P., and Dastugue, N., Chromosome studies in 2136 couples with spontaneous abortions, Hum. Reprod., 1986, vol. 74, pp. 399—401.Google Scholar
  22. 22.
    Cantú, J.M., Hernández, A., Jiménez-Sáinz, M., et al., Chromosome aberrations in 334 individuals with various types of abortion (including 144 couples), Rev. Invest. Clin. (Mex.), 1985, vol. 37, pp. 131—134.Google Scholar
  23. 23.
    Castle, D. and Bernstein, R., Cytogenetic analysis of 688 couples experiencing multiple spontaneous abortions, Am. J. Med. Genet., 1988, vol. 29, pp. 549—556.  https://doi.org/10.1002/ajmg.1320290312 CrossRefPubMedGoogle Scholar
  24. 24.
    Celep, F., Karaguzel, A., Ozeren, M., and Bozkaya, H., The frequency of chromosomal abnormalities in patients with reproductive failure, Eur. J. Obstet. Gynecol., 2006, vol. 127, pp. 106—109.  https://doi.org/10.1016/j.ejogrb.2005.12.019 CrossRefGoogle Scholar
  25. 25.
    De la Fuente-Cortés, B.E., Cerda-Flores, R.M., Dávila-Rodríguez, M.I., et al., Chromosomal abnormalities and polymorphic variants in couples with repeated miscarriage in Mexico, Reprod. Biomed. Online, 2009, vol. 18, pp. 543—548.CrossRefPubMedGoogle Scholar
  26. 26.
    Dubey, S., Chowdhury, M.R., Prahlad, B., et al., Cytogenetic causes for recurrent spontaneous abortions—an experience of 742 couples (1484 cases), Indian J. Hum. Genet., 2005, vol. 11, pp. 94—98.CrossRefGoogle Scholar
  27. 27.
    Dutta, U.R., Rajitha, P., Pidugu, V.K., and Dalal, A.B., Cytogenetic abnormalities in 1162 couples with recurrent miscarriages in southern region of India: report and review, J. Assist. Reprod. Genet., 2011, vol. 28, pp. 145—149.  https://doi.org/10.1007/s10815-010-9492-6 CrossRefPubMedGoogle Scholar
  28. 28.
    FitzSimmons, J., Wapner, R.J., and Jackson, L.G., Repeated pregnancy loss, Am J. Med. Genet., 1983, vol. 16, pp. 7—13.  https://doi.org/10.1002/ajmg.1320160103 CrossRefPubMedGoogle Scholar
  29. 29.
    Fortuny, A., Carrio, A., Soler, A., et al., Detection of balanced chromosome rearrangements in 445 couples with repeated abortion and cytogenetic prenatal testing in carriers, Fertil. Steril., 1988, vol. 49, pp. 774—779.CrossRefPubMedGoogle Scholar
  30. 30.
    Fryns, J.P., Kleczkowska, A., Kubien, E., et al., Cytogenetic survey in couples with recurrent fetal wastage, Hum. Genet., 1984, vol. 65, pp. 336—354.CrossRefPubMedGoogle Scholar
  31. 31.
    Fryns, J.P. and Van Buggenhout, G., Structural chromosome rearrangements in couples with recurrent fetal wastage, Eur. J. Obstet. Gynecol. Reprod. Biol., 1998, vol. 81, pp. 171—176. 10.1016/S0301-2115(98)00185-7Google Scholar
  32. 32.
    Ghazaey, S., Keify, F., Mirzaei, F., et al., Chromosomal amalysis of couples with repeated spontaneous abortions in northeastern Iran, Int. J. Fertil. Steril., 2015, vol. 9, pp. 47—54.  https://doi.org/10.22074/ijfs.2015.4208 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Goddijn, M., Joosten, J.H.K., Kneg, A.C., et al., Clinical relevance of diagnosis structural chromosome abnormalities in couples with repeated miscarriage, Hum. Reprod., 2004, vol. 19, pp. 1013—1017.  https://doi.org/10.1093/humrep/deh172 CrossRefPubMedGoogle Scholar
  34. 34.
    Husslein, P., Huber, J., Wagenbichler, P., and Schnedl, W., Chromosome abnormalities in 150 couples with multiple spontaneous abortions, Fertil. Steril., 1982, vol. 37, pp. 379—383.CrossRefPubMedGoogle Scholar
  35. 35.
    Ioan, D.M., Dumitriu, L., Muşeşeanu, P., et al., Cytogenetic investigation in 300 couples with recurrent fetal wastage, Endocrinologie, 1987, vol. 25, pp. 145—148.PubMedGoogle Scholar
  36. 36.
    Karaman, A. and Ulug, P., Cytogenetic analysis of couples with recurrent miscarriages: a series of 316 cases, New J. Med., 2013, vol. 30, pp. 30—32.Google Scholar
  37. 37.
    Kochhar, P.K. and Ghosh, P., Reproductive outcome of couples with recurrent miscarriage and balanced chromosomal abnormalities, J. Obstet. Gynecol. Res., 2013, vol. 39, pp. 113—120.  https://doi.org/10.1111/j.1447-0756.2012.01905.x CrossRefGoogle Scholar
  38. 38.
    Lippman-Hand, A. and Vekemans, M., Balanced translocations among couples with two or more spontaneous abortions: are males and females equally likely to be carriers?, Hum. Reprod., 1983, vol. 63, pp. 252—257.Google Scholar
  39. 39.
    Meza-Espinoza, J.P., Anguiano, L.O., and Rivera, H., Chromosomal abnormalities in couples with reproductive disorders, Gynecol. Obstet. Invest., 2008, vol. 66, no. 25, pp. 237—240.CrossRefPubMedGoogle Scholar
  40. 40.
    Nazmy, N.A., Cytogenetic studies of couples with reproductive failure in Alexandria, Egypt, J. Egypt Public Health. Assoc., 2008, vol. 83, pp. 255—271.  https://doi.org/10.1159/000147170 CrossRefPubMedGoogle Scholar
  41. 41.
    Ocak, Z., Ȍzlȕ, T., and Ozyurt, O., Association of recurrent pregnancy loss with chromosomal abnormalities and hereditary thrombophilias, Afr. Health Sci., 2013, vol. 13, pp. 447—452.  https://doi.org/10.4314/ahs.v13i2.35 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Osztovics, M.K., Tóth, S.P., and Wessely, J.A., Cytogenetic investigations in 418 couples with recurrent fetal wastage, Ann. Génét., 1982, vol. 25, pp. 232—236.PubMedGoogle Scholar
  43. 43.
    Portnoï, M.-F., Joye, N., Den Akker, J.V., et al., Karyotypes of 1142 couples with recurrent abortion, Obstet. Gynecol., 1988, vol. 72, pp. 31—34.PubMedGoogle Scholar
  44. 44.
    Schwartz, S. and Palmer, C.G., Chromosomal findings in 164 couples with repeated spontaneous abortions: with special consideration to prior reproductive history, Hum. Reprod., 1983, vol. 63, pp. 28—34.Google Scholar
  45. 45.
    Sheth, F.J., Liehr, T., Kumari, P., et al., Chromosomal abnormalities in couples with repeated fetal loss: an Indian retrospective study, Indian J. Hum. Genet., 2013, vol. 19, pp. 415—422.  https://doi.org/10.4103/0971-6866.124369 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sugiura-Ogasawara, M., Aoki, K., and Fujii, T., Subsequent pregnancy outcomes in recurrent miscarriage patients with a paternal or maternal carrier of a structural chromosome rearrangement, J. Hum. Genet., 2008, vol. 53, pp. 622—628.  https://doi.org/10.1007/s10038-008-0290-2 CrossRefPubMedGoogle Scholar
  47. 47.
    Tsenghi, C., Metaxotou, C., Kalpini-Mavrou, A., et al., Parental chromosome translocations and fetal loss, Obstet. Gynecol., 1981, vol. 58, pp. 456—458.PubMedGoogle Scholar
  48. 48.
    Tunc, E., Tanriverdi, N., Demirhan, O., et al., Chromosomal analyses of 1510 couples who have experienced recurrent spontaneous abortions, Reprod. Biomed. Online, 2016, vol. 32, pp. 414—419.  https://doi.org/10.1016/j.rbmo.2016.01.006 CrossRefPubMedGoogle Scholar
  49. 49.
    Turleau, C., Chavin-Colin, F., and de Grouchy, J., Cytogenetic investigation in 413 couples with spontaneous abortions, Eur. J. Obstet. Gynecol. Reprod. Biol., 1979, vol. 9, pp. 65—74.CrossRefPubMedGoogle Scholar
  50. 50.
    Valkova, G., The reproductive risk for carriers of balanced chromosome aberrations, Genet. Breed. (Sofia), 1986, vol. 19, pp. 205—2011.Google Scholar
  51. 51.
    Åbyholm, T. and Stray-Pedersen, S., Hypospermiogenesis and chromosomal aberrations: a clinical study of azoospermoc and oligozoospermoc men with normal and abnormal chromosomes, Int. J. Androl., 1981, vol. 4, pp. 546—558.CrossRefPubMedGoogle Scholar
  52. 52.
    Alhalabi, M., Kenj, M., Monem, F., et al., High prevalence of genetic abnormalities in Middle Eastern patients with idiopathic non-obstructive azoospermia, J. Assist. Reprod. Genet., 2013, vol. 30, pp. 799—805.  https://doi.org/10.1007/s10815-013-9995-z CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Amouri, A., Hamami, W., and Kilani, O., Chromosomal evaluation in a group of Tunisian patients with non-obstructive azoospermia and severe oligospermia and severe oligospermia attending a Tunisian cytogenetic department, C.R. Biol., 2014, vol. 337, pp. 223—228.  https://doi.org/10.1016/j.crvi.2014.02.006 CrossRefPubMedGoogle Scholar
  54. 54.
    Antonelli, A., Gandini, L., Petrinelli, P., et al., Chromosomal alterations and male infertility, J. Endocrinol. Invest., 2000, vol. 23, pp. 677—683.CrossRefPubMedGoogle Scholar
  55. 55.
    Bertini, V., Simi, P., and Valetto, A., Cytogentic study of 435 subfertile men: incidence and clinical features, J. Reprod. Med., 2006, vol. 51, pp. 15—20.PubMedGoogle Scholar
  56. 56.
    Bor, P., Hindkjær, J., Kølvaa, S., and Ingerslev, H.J., Y-chromosome microdeletions and cytogenetic findings in unselected ICSI candidates at a Danish fertility clinic, J. Assist. Reprod. Genet., 2002, vol. 19, pp. 224—231.  https://doi.org/10.1023/A:1015358802577 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bourrouillou, G., Mansat, A., Calvas, P., et al., Chromosome anomalies and male infertility: a study of 1,444 subjects, Bull. Assoc. Anat. (Nancy), 1987, vol. 71, no. 215, pp. 29—31.Google Scholar
  58. 58.
    Cavkaytar, S., Batioglu, S., Gunel, M., et al., Genetic evaluation of severe male factor infertility in Turkey: a cross-sectional study, Hum. Fertil., 2012, vol. 15, pp. 100—106.  https://doi.org/10.3109/14647273.2012.685923 CrossRefGoogle Scholar
  59. 59.
    Cortés-Gutiérrez, E.A., Cerda-Flores, R.M., Dávila-Rodríguez, M.T., et al., Chromosomal abnormalities and polymorphisms in Mexican infertile men, Arch. Androl., 2004, vol. 50, pp. 261—265.  https://doi.org/10.1080/01485010490448750 CrossRefPubMedGoogle Scholar
  60. 60.
    Dul, E.C., van Echten-Arends, J., Groen, H., et al., Chromosomal abnormalities in azoospermic and non-azoospermic men: numbers needed to be screened to prevent adverse pregnancy outcome, Hum. Reprod., 2012, vol. 27, pp. 2850—2856.  https://doi.org/10.1093/humrep/des222 CrossRefPubMedGoogle Scholar
  61. 61.
    Elfateh, F., Wang, R., Zhang, Z., et al., Influence of genetic abnormalities on semen quality and male fertility, Iran J. Reprod. Med., 2014, vol. 12, pp. 95—102.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Elghezal, H., Hidar, S., Braham, R., et al., Prevalence of chromosomal abnormalities in couples with recurrent miscarriage, Fertil. Steril., 2006, vol. 86, pp. 1792—1795.CrossRefPubMedGoogle Scholar
  63. 63.
    Faed, M.J., Robertson, J., Lamont, M.A., et al., A cytogenetic survey of men being investigated for infertility, J. Reprod. Fertil., 1979, vol. 56, pp. 209—216.CrossRefPubMedGoogle Scholar
  64. 64.
    Foresta, C., Garolla, A., Bartoloni, L., et al., Genetic abnormalities among severely oligospermic men who are candidates for intracytoplasmic sperm injection, J. Clin. Endocrinol. Metab., 2005, vol. 90, pp. 152—156.  https://doi.org/10.1210/jc.2004-1469 CrossRefPubMedGoogle Scholar
  65. 65.
    Frouzandeh, M., Saeideh, S., and Sanas, M., Chromosomal abnormalities in infertile men referred to Iran Transfusion Organization Research Center, J. Reprod. Infertil., 2010, vol. 11, pp. 175—178.PubMedGoogle Scholar
  66. 66.
    Fu, L., Xiang, D.-K., Ding, X.-P., et al., Genetic screening for chromosomal abnormalities and Y chromosome microdeletions in Chinese infertile men, J. Assist. Reprod. Genet., 2012, vol. 29, pp. 521—527.  https://doi.org/10.1007/s10815-012-9741-y CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gekas, J., Thepot, F., Turleau, C., et al., Chromosomal factors of infertility in candidate couples for ICSI: an equal risk of constitutional aberrations in women and men, Hum. Reprod., 2001, vol. 16, pp. 82—90.CrossRefPubMedGoogle Scholar
  68. 68.
    Hofherr, S.E., Wiktor, A.E., Kipp, B.R., et al., Clinical diagnostic testing for the cytogenetic and molecular causes of male infertility: the Mayo Clinic experience, J. Assist. Reprod. Genet., 2011, vol. 28, pp. 1091—1098.  https://doi.org/10.1007/s1015-011-9633-6 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kumar, R., Tanwar, M., Ammimi, A.C., et al., Robertsonian translocations and their role in pathogenesis of recurrent in vitro fertilization failure, Med. Sci. Monit., 2008, vol. 14, pp. 617—620.Google Scholar
  70. 70.
    Matsuda, T., Horii, Y., Ogura, K., et al., Chromosomal survey of 1001 subfertile males: incidence and clinical features of males with chromosomal anomalies, Acta Urol. Jpn., 1992, vol. 38, pp. 803—809.Google Scholar
  71. 71.
    Mićić, M., Mićić, S., and Diklić, V., Chromosomal constitution of infertile men, Clin. Genet., 1984, vol. 25, pp. 33—36.  https://doi.org/10.1111/j.1399-0004.1984.tb00459.x CrossRefPubMedGoogle Scholar
  72. 72.
    Mierla, D., Jardan, D., and Stoian, V., Chromosomal abnormality in men with impaired spermatogenesis, Int. J. Fertil. Steril., 2014, vol. 8, pp. 35—42.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Mohammed, F., Al-Yatama, F., and Al-Bader, M., Primary male infertility in Kuwait: a cytogenetic and molecular study of 289 infertile Kuwait patients, Andrologia, 2007, vol. 39, pp. 87—92.  https://doi.org/10.1111/j.1439-0272.2007.00769.x CrossRefPubMedGoogle Scholar
  74. 74.
    Naasse, Y., Charout, H.El., and Houate, B., Chromosome abnormalities and Y chromosome microdeletions in infertile men from Morocco, BMC Urol., 2015, vol. 15, p. 95.  https://doi.org/10.1186/s12894-015-0089-3 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Nakamura, Y., Kitamura, M., and Nishimura, K., Chromosomal variants among 1790 infertile men, Int. J. Urol., 2001, vol. 8, pp. 49—52.  https://doi.org/10.1046/j.1442-2042.2001.00242.x CrossRefPubMedGoogle Scholar
  76. 76.
    Ng, P.P., Tang, M.H., and Lau, E.T., Chromosomal anomalies among Chinese infertile men in Hong Kong, Hong Kong Med. J., 2009, vol. 15, pp. 31—38.PubMedGoogle Scholar
  77. 77.
    Ocak, Z., Ȕyetȕork, U., and Dinҁer, M.M., Clinical and prognostic importance of chromosomal abnormalities, Y chromosome microdeletions, and CFTR gene mutations in individuals with azoospermia or severe oligospermia, Turk. J. Med. Sci., 2014, vol. 44, pp. 347—351.  https://doi.org/10.3906/sag-1301-67 CrossRefPubMedGoogle Scholar
  78. 78.
    Olesen, I.A., Andersson, A.-M., and Aksglaede, L., Clinical, genetic, biochemical, and testicular biopsy findings among 1213 men evaluated for infertility, Fertil. Steril., 2017, vol. 107, pp. 74—82. e7.  https://doi.org/10.1016/j.fertnstert.2016.09.015
  79. 79.
    Pandiyan, N. and Jequer, A.M., Mitotic chromosomal anomalies among 1210 infertile men, Hum. Reprod., 1996, vol. 11, pp. 2604—2608.CrossRefPubMedGoogle Scholar
  80. 80.
    Rao, K., Babu, K.A., Kanakavalli, M.K., et al., Prevalence of chromosomal defects in azoospermic and oligoastheno-teratozoospermic infertility clinic, Reprod. Biomed. Online, 2005, vol. 10, pp. 467—472.CrossRefPubMedGoogle Scholar
  81. 81.
    Retief, A.E. Van Zyl, J.A., et al., Chromosome studies in 496 infertile males with a sperm count below 10 million/ml, Hum. Reprod., 1984, vol. 66, pp. 162—164.Google Scholar
  82. 82.
    Salahshourifar, I., Gilani, M.A.S., sadat Masoudi, N., and Gourabi, H., Chromosomal abnormalities in Iranian infertile males who are candidates for assisted reproductive techniques, Iran. J. Fertil. Steril., 2007, vol. 1, pp. 75—79.Google Scholar
  83. 83.
    Tuerlings, J.H.A.M., de France, H.F., Hamers, A., et al., Chromosome studies in 1792 males prior to intra-cytoplasmic sperm injection: the Dutch experience, Eur. J. Hum. Genet., 1998, vol. 6, pp. 194—200.  https://doi.org/10.1038/sj.ejhg.5200193 CrossRefPubMedGoogle Scholar
  84. 84.
    Wang, R.-X., Fu, C., Yang, Y.-P., et al., Male infertility in China: laboratory findings for AZF misrodeletions and chromosomal abnormalities in infertile men from Northeastern China, J. Assist. Reprod. Genet., 2010, vol. 27, pp. 391—396.  https://doi.org/10.1007/s10815-010-9420-9 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Yatsenko, A.N., Yatsenko, S.A., and Weedin, J.W., Comprehensive 5-year study of cytogenetic aberrations in 668 infertile men, J. Urol., 2010, vol. 183, pp. 1636—1642.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yoshida, A., Miura, K., and Shirai, M., Cytogenetic survey of 1007 infertile males, Urol. Int., 1997, vol. 58, pp. 166–176.Google Scholar
  87. 87.
    De Almeida, J.C.C., Llerena, J.C., Jr., and Gomes, D.M., Ring 13 in an adult male with a 13;13 translocation mother, Ann. Genet., 1983, vol. 26, pp. 112—115.PubMedGoogle Scholar
  88. 88.
    Begleiter, M.L., Cox, G.F., and Pasztor, L.M., Post-zygotic origin of a biparental 13;13 Robertsonian translocation in the mother of a fetus with trisomy 13, Am. J. Hum. Genet., 2000, vol. 67, suppl. 4, p. 638.Google Scholar
  89. 89.
    Brash, I.M. and Smith, D.R., Absence of silver bands in human Robertsonian translocation chromosomes, Cytogenet. Cell. Genet., 1979, vol. 24, pp. 122—125.  https://doi.org/10.1159/000131365 CrossRefGoogle Scholar
  90. 90.
    Daniel, A., Hook, E.B., and Wulf, G., Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories, Am. J. Med. Genet., 1989, vol. 33, pp. 14—53.  https://doi.org/10.1002/ajmg.1320330105 CrossRefPubMedGoogle Scholar
  91. 91.
    Faraj Pour, A., Azimi, C., and Khaleghian, M., Recurrent spontaneous abortions due to a homologous Robertsonian translocation (13q13q), Eur. J. Hum. Genet., 2009, vol. 17, suppl. 2, p. 101.Google Scholar
  92. 92.
    Kozlova, S.I., Korobova, L.I., Tsvetkova, T.G., and Kulieva, L.M., Genetic counseling at cyclopia, Akusher. Ginekol., 1976, vol. 12, pp. 45—51.Google Scholar
  93. 93.
    Lazyuk, G.I., Lur’e, I.V., Gurevich, D.B., et al., A case of homologous Robertson translocation between chromosomes 13–t(13; 13)(p11; q11) in a mother of three children with Patau syndrome, Registr khromosomnykh boleznei cheloveka (Register of Human Chromosomal Diseases), Moscow: Inst. Med. Genet., 1984.Google Scholar
  94. 94.
    Niebuhr, E., Dicentric and monocentric Robertsonian translocations in man, Humangenetik, 1972, vol. 16, pp. 217—226.PubMedGoogle Scholar
  95. 95.
    Parslow, M.I., Gardner, R.J.M., and Veale, A.M.O., Giemsa banding in the t(13q13q) carrier mother of translocation trisomy 13 abortus, Humangenetik, 1973, vol. 18, pp. 183—184.CrossRefPubMedGoogle Scholar
  96. 96.
    Romain, D.R., Columbano-Green, L., Sullivan, J., et al., Cd banding in a homologous Robertsonian 13;13 translocation, J. Med. Genet., 1982, vol. 19, pp. 306—309.  https://doi.org/10.1136/jmg.19.4.306. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Slater, H., Shaw, J.H., Dawson, G., et al., Maternal uniparental disomy of chromosome 13 in a phenotypically normal child, J. Med. Genet. 1994, vol. 31, pp. 644—646.  https://doi.org/10.1136/jmg.31.8.644. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Stallard, R., Krueger, S., James, R.S., and Schwartz, S., Uniparental disomy 13 in a normal female due to transmission of maternal t(13q13q), Am. J. Med. Genet., 1995, vol. 57, pp. 14—18.  https://doi.org/10.1002/ajmg.1320570105 CrossRefPubMedGoogle Scholar
  99. 99.
    Borgaonkar, D.S., Repository of Human Chromosomal Variants and Anomalies, Delaware: Med. Center Delaware, 1990, 13th ed.Google Scholar
  100. 100.
    Veld, P.A., Weber, R.F., Los, F.J., et al., Two cases of Robertsonian translocations in oligospermic males and their consequences for pregnancies induced by intracytoplasmic sperm injection, Hum. Reprod., 1997, vol. 12, pp. 1642—1644.CrossRefPubMedGoogle Scholar
  101. 101.
    Zanganeh, M., Voghouie, S., Karimi-Nejad, A., et al., An interesting case of mosaic tetrasomy, trisomy, disomy and monosomy of chromosome 13, Eur. J. Hum. Genet., 2001, vol. 8, suppl., p. 0226.Google Scholar
  102. 102.
    Zankl, H. and Hahman, S., Cytogenetic examination of the NOR activity in a proband with 13/13 translocation and in her relatives, Hum. Genet., 1978, vol. 43, pp. 275—279.CrossRefGoogle Scholar
  103. 103.
    Chen, C.-P., Chern, S.-R., Wu, C.-H., et al., Detection of balanced homologous acrocentric rearrangement rea(14q14q) and low-grade X-chromosome mosaicism in a couple with related pregnancy loss, Taiwan J. Obstet. Gynecol., 2010, vol. 42, pp. 239—242.CrossRefGoogle Scholar
  104. 104.
    Cinar, C., Beyazyurek, C., Ekmekci, C.G., et al., Sperm fluorescence in situ hybridization analysis revels normal sperm cells for 14;14 homologous male Robertsonian translocation carrier, Fertil. Steril., 2011, vol. 95, pp. 285—289.  https://doi.org/10.1016/j.fertnstert.2010.05.033 CrossRefGoogle Scholar
  105. 105.
    Gracias-Espinal, R., Roberts, S.H., Duckett, D.P., and Lawrence, K.M., Recurrent spontaneous abortions due to a homologous Robertsonian translocation (14q14q), J. Med. Genet., 1982, vol. 19, pp. 465—467.  https://doi.org/10.1136/jmg.19.6.465.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Hulten, M. and Lindsten, J., The behavior of structural aberrations at male meiosis, in Human Population Cytogenetics, Jacobs, P.A., Price, W., and Law, P., Eds., Edinburgh: Edinburgh Univ. Press, 1970, pp. 23—61.Google Scholar
  107. 107.
    Maeda, T., Ohno, M., Takada, M., et al., Postzygotic D/D translocation homozygosity associated with recurrent abortion, Am. J. Med. Genet., 1983, vol. 15, pp. 389—392.  https://doi.org/10.1002/ajmg.1320150304 CrossRefPubMedGoogle Scholar
  108. 108.
    Papenhausen, P.R., Mueller, O.T., Johnson, V.P., et al., Uniparental isodisomy of chromosome 14 in two cases: an abnormal child and a normal adult, Am. J. Med. Genet., 1995, vol. 59, pp. 271—275.  https://doi.org/10.1002/ajmg.1320590302
  109. 109.
    Pentao, L., Lewis, R.A., Ledbetter, D.H., et al., Maternal uniparental disomy of chromosome 14: association with autosomal recessive rod monochromacy, Am. J. Hum. Genet., 1992, vol. 50, pp. 690—699.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Schmid, W., Cytogenetic results in 96 couples with repeated abortions, Clin. Genet., 1980, vol. 17, p. 85.Google Scholar
  111. 111.
    Shandlorenko, S.K., Pantova, I.G., and Shushval, O.N., Cytogenetic studies in medical and genetic counseling for families with obstetric history, Aktual’nye voprosy profilaktiki nasledstvennykh boleznei (Topical Issues of the Prevention of Hereditary Diseases) (Proc. All-Union Symp.), Vilnus, 1986, pp. 132—133.Google Scholar
  112. 112.
    Zhou, H.G., Kang, X.Z., and Zhang, Q.Q., Homologous 14q14q Robertsonian translocation in man, Chin. Med. J., 1983, vol. 96, pp. 625—633.PubMedGoogle Scholar
  113. 113.
    Bartsch-Sandhoff, M., Fusion of homologous chromosomes (15q15q) as cause of recurrent abortion, Lancet, 1977, no. 18010, p. 551.  https://doi.org/10.1016/S0140-6736(77)91418-0
  114. 114.
    Biricik, A., Guney, I., Berkil, H., et al., A male (15;15) Robertsonian translocation case with 11 previous consecutive recurrent spontaneous abortions, Marmara Med. J., 2004, vol. 17, pp. 35—38.Google Scholar
  115. 115.
    Geraedts, J.P. and Klasen, E.C., Chromosome studies and α1-antitrypsin phenotypes in recurrent abortions, Clin. Genet., 1980, vol. 176, p. 68.Google Scholar
  116. 116.
    Gil’nich, N.A., Izotova, T.A., Knyazeva, G.P., et al., Cytogenetic abnormalities and chromosomal polymorphism associated with reproductive failure, II (IV) Rossiiskii S”ezd med. genetikov (2nd (4th) Russian Conference of Medical Geneticists), Kursk, 2000, pp. 118—119.Google Scholar
  117. 117.
    Neri, G., Serra, A., Campana, M., and Tedeschi, B., Reproductive risks for translocation carriers: cytogenetic study and analysis of pregnancy outcome in 58 families, Am. J. Med. Genet., 1983, vol. 16, pp. 535—561.  https://doi.org/10.1002/ajmg.1320160412 CrossRefPubMedGoogle Scholar
  118. 118.
    Kolgeci, S., Kolgeci, J., Azemi, M., et al., Reproductive risk of the silent carrier of Robertsonian translocation, Med. Arch., 2013, vol. 67, pp. 56—59.  https://doi.org/10.5455/medarh.2013.67.56-59 CrossRefPubMedGoogle Scholar
  119. 119.
    Lipson, M.H. and Breg, W.R., Non-karyotyping evidence for mosaicism in 15;15 translocation: implications for genetic counseling and patient management, Am. J. Hum. Genet., 1978, vol. 30, suppl. 6, p. 58A.Google Scholar
  120. 120.
    Lucas, M., Translocation between both members of chromosome pair number 15 causing recurrent abortions, Ann. Hum. Genet., 1969, vol. 32, pp. 347—352.CrossRefPubMedGoogle Scholar
  121. 121.
    Neri, G., Ricchi, R., Pelino, A., et al., A boy with ring chromosome 15 derived from a t(15q;15q) Robertsonian translocation in the mother: cytogenetic and biochemical findings, Am. J. Med. Genet., 1983, vol. 14, pp. 307—314.  https://doi.org/10.1002/ajmg.1320140211 CrossRefPubMedGoogle Scholar
  122. 122.
    Robinson, W.P., Bernasconi, F., Basaran, S., et al., A somatic origin of homologous Robertsonian translocations and isochromosomes, Am. J. Hum. Genet., 1994, vol. 54, pp. 290—302.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Yoshida, M.C., Nomoto, N., and Sasaki, M., Quinacrine fluorescence patterns in somatic chromosomes of a t(15q15q) carrier, Humangenetik, 1972, vol. 15, pp. 66—70.PubMedGoogle Scholar
  124. 124.
    Zizka, J., Balicek, P., and Finkova, A., Translocation D/D involving two homologous chromosomes of the pair 15, Hum. Genet., 1977, vol. 36, pp. 123—125.CrossRefPubMedGoogle Scholar
  125. 125.
    Blouin, J.-L., Avramapoulus, D., Pangalos, C., and Antonarakis, S.E., Normal phenotype with paternal uniparental disomy for chromosome 21, Am. J. Hum. Genet., 1993, vol. 53, pp. 1074—1078.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Blouin, J.-L., Binkert, F., and Antonarakis, S.E., Biparental inheritance of chromosome 21 polymorphic markers indicate that some Robertsonian translocations t(21;21) occur postzygotically, Am. J. Hum. Genet., 1994, vol. 49, pp. 363—368.  https://doi.org/10.1002/ajmg.1320490333 CrossRefGoogle Scholar
  127. 127.
    Creau-Goldberg, N., Gegaine, A., Delabar, J.M., et al., Maternal origin of a de novo balanced t(21q21q) identified by ets-2 polymorphism, Hum. Genet., 1987, vol. 76, pp. 396—398.CrossRefPubMedGoogle Scholar
  128. 128.
    Furbetta, M., Falorni, A., Antignain, P., and Cao, A., Sibship (21q21q) translocation Down’s syndrome with maternal transmission, J. Med. Genet., 1973, vol. 10, pp. 371—375.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Kovacova, E. and Cisarik, F., 21/21 carrier as the result of unexpected segregation of Robertsonian translocation 14/21, Eur. J. Hum. Genet., 2001, vol. 9, suppl. 1, p. 144.Google Scholar
  130. 130.
    Lukas, M., Wallace, I., and Hirschorn, K., Recurrent abortions and chromosome abnormalities, J. Obstet. Gynaecol., 1972, vol. 79, pp. 1119—1127.CrossRefGoogle Scholar
  131. 131.
    Neumann, T.E., Bogdanova, N., Exeler, J.R., et al., Confirmed Robertsonian t(21;21) in a mother of two healthy boys with normal karyotype (46,XY), Ann. Genet., 2003, vol. 46, suppl. 2—3, p. 201.Google Scholar
  132. 132.
    Sudha, T. and Gopinath, P.M., Homologous Robertsonian translocation (21q21q) and abortions, Hum. Genet., 1990, vol. 85, pp. 253—255.CrossRefPubMedGoogle Scholar
  133. 133.
    Uehara, S., Takabayashi, T., Okamura, K., and Yajima, A., The outcome of pregnancy and prenatal chromosomal diagnosis of fetuses in couples including a translocation carrier, Prenat. Diagn., 1992, vol. 12, pp. 1009—1018.  https://doi.org/10.1002/pd.1970121206 CrossRefPubMedGoogle Scholar
  134. 134.
    Chopade, D.K., Harde, H., Ugale, P., and Chopade, S., Unexpected inheritance of a balanced homologous translocation t(22q;22q) from father to a phenotypically normal daughter, Indian J. Hum. Genet., 2014, vol. 20, pp. 85—89.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Farah, L.M.S., de Nazareth, H.R., Doenikoff, M., and Delascio, D., Balanced homologous translocation t(22q22q) in a phenotypically normal woman with repeated spontaneous abortions, Humangenetik, 1975, vol. 28, pp. 357—360.PubMedGoogle Scholar
  136. 136.
    Kirkelis, V.G.H.J., Hustinx, T.W.J., and Scheres, J.M.J.C., Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter, Clin. Genet., 1980, vol. 18, pp. 456—461.  https://doi.org/10.1111/j.1399-0004.1980.tb01794.x CrossRefGoogle Scholar
  137. 137.
    Laurent, C., Papathanassiou, Z., Haour, P., and Cognat, M., Mitotic and meiotic studies on 70 cases of male sterility, Andrologie, 1973, vol. 5, pp. 193—200.CrossRefPubMedGoogle Scholar
  138. 138.
    Lewis, B.V. and Ridler, M.A.C., Recurrent abortion associated with a balanced 22;22 translocation, or isochromosome 22q in a monozygous twin, Hum. Genet., 1977, vol. 37, pp. 81—85.CrossRefPubMedGoogle Scholar
  139. 139.
    Maeda, T., Ohno, M., Shimada, N., et al., A 22/22 translocation carrier with recurrent abortions demonstrated by a Giemsa banding technique, Hum. Genet., 1976, vol. 31, pp. 243—245.CrossRefPubMedGoogle Scholar
  140. 140.
    Mameli, M., Cardia, S., Milia, A., and Seabright, M., A further case of a 22;22 Robertsonian translocation associated with recurrent abortions, Hum. Genet., 1978, vol. 41, pp. 359—361.CrossRefPubMedGoogle Scholar
  141. 141.
    Miny, P., Koppers, B., Bogdanova, N., et al., Paternal uniparental disomy 22, Med. Genet., 1995, vol. 7, p. 216.Google Scholar
  142. 142.
    Multani, A.S., Radhakrishna, U., Sheth, F.J., et al., Translocation t(22;22)(p11.1;q11.1) and NOR studies in a female with a history of repeated fetal loss, Ann. Genet., 1992, vol. 35, pp. 105—109.PubMedGoogle Scholar
  143. 143.
    Palmer, C.G., Schwartz, S., and Hodes, M.E., Transmission of a balanced homologous t(22q;22q) translocation from mother to normal daughter, Clin. Genet., 1980, vol. 17, pp. 418—422.  https://doi.org/10.1111/j.1399-0004.1980.tb00173.x CrossRefPubMedGoogle Scholar
  144. 144.
    Pantova, I.G. and Chen, T.P., The case of balanced translocation between chromosomes 22, in Sovremennyye problemy v klinicheskoy tsitogenetike: sbornik nauchnykh trudov (Current Challenges in Clinical Cytogenetics: a Collection of Scientific Papers), Moscow: Inst. Med. Genet. Russ. Akad. Med. Sci., 1991, p. 82.Google Scholar
  145. 145.
    Schinzel, A.A., Basaran, S., Bernasconi, F., et at., Maternal uniparental disomy 22 has no impact on the phenotype, Am. J. Hum. Genet., 1994, vol. 54, pp. 21—24.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Schwinger, E., Translocation 22/22? Lancet, 1973, vol. 2, pp. 854—855.  https://doi.org/10.1016/S0140-6736(73)90908-2
  147. 147.
    Temperani, P. and Forabosko, A., Recurrent abortion associated with rob(22/22) in a male carrier, Clin. Genet., 1980, vol. 17, p. 90.Google Scholar
  148. 148.
    Van Erp, F., Offspring of a male 45,XY,der(22;22)(q10;q10) carrier, Eur. J. Hum. Genet., 2016, vol. 24, suppl. 1, p. 58.Google Scholar
  149. 149.
    Zhao, W.-W., Wu, M., Chen, F., et al., Robertsonian translocations: an overview of 872 Robertsonian translocations identified in a diagnostic laboratory in China, PLoS One, 2015, vol. 10. e0122647.  https://doi.org/10.1371/journal.pone.0122647 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Kovaleva, N.V., Sex-specific chromosome instability in early human development, Am. J. Med. Genet., 2005, vol. 136A, pp. 401—413.  https://doi.org/10.1002/ajmg.a.30815 CrossRefPubMedGoogle Scholar
  151. 151.
    Harrison, J.C. and Schwab, C., Constitutional abnormalities of chromosome 21 predispose to IAMP21-acute lymphoblastic leukaemia, Eur. J. Med. Genet., 2016, vol. 59, pp. 162—165.  https://doi.org/10.1016/j.ejmg.2016.01.006 CrossRefPubMedGoogle Scholar
  152. 152.
    Dallapiccola, B., Bianco, I., Brinchi, V., et al., t(21q;21q/r(t(21q;21q))) mosaic in two unrelated patients with mild stigmata of Down syndrome, Ann. Genet., 1982, vol. 25, pp. 56—58.PubMedGoogle Scholar
  153. 153.
    Stetten, G., Tuck-Miller, C., Blakemore, K.J., et al., Evidence for involvement of a Rrobertsonian translocation 13 chromosome in formation of a ring chromosome 13, Mol. Biol. Med., 1990, vol. 7, pp. 479—484.PubMedGoogle Scholar
  154. 154.
    Adam, L.R., Kashork, C.D., Van den Veyver, I.B., et al., Ring chromosome 15: discordant karyotypes in amniotic fluid, placenta and cord, Am. J. Hum. Genet., 1998, vol. 63, suppl., p. A126.Google Scholar
  155. 155.
    Fujimoto, A., Lin, M.S., Korula, S.R., and Wilson, M.G., Trisomy 14 mosaicism with t(14;15)(q11;p11) in offspring of a balanced translocation carrier mother, Am. J. Med. Genet., 1985, vol. 22, pp. 333—342.  https://doi.org/10.1002/ajmg.1320220217 CrossRefPubMedGoogle Scholar
  156. 156.
    McFadden, D.E., Dill, F., and Kalousek, D.K., Fission in 1q isochromosome, Am. J. Hum. Genet., vol. 39, suppl. 3, p. A133.Google Scholar
  157. 157.
    Fryns, J.P., Kleczkowska, A., Limbos, C., et al., Centric fission of chromosome 7 with 47,XX,del(7)(pter->cen::q21->qter)+cen fr karyotype in a mother and proximal 7q deletion in two malformed newborns, Ann. Genet., 1985, vol. 28, pp. 248—250.PubMedGoogle Scholar
  158. 158.
    Del Porto, G., Di Fusco, C., Baldi, M., et al., Familial centric fission of chromosome 4, J. Med. Genet., 1984, vol. 21, pp. 388—391.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Kovaleva, N.V., Nonmosaic balanced homologous translocations of major clinical significance: some may be mosaic, Am. J. Med. Genet., Part A, 2007, vol. 143, pp. 2843—2850.  https://doi.org/10.1002/ajmg.a.31745 CrossRefGoogle Scholar
  160. 160.
    Hsiang, Y.H., Berkovitz, G.D., Bland, G.L., et al., Gonadal function in patients with Down syndrome, Am. J. Med. Genet., 1987, vol. 27, pp. 449—458.CrossRefPubMedGoogle Scholar
  161. 161.
    Kim, S.T., Cha, Y.B., Park, J.M., and Gye, M.C., Successful pregnancy and delivery from frozen-thawed embryos after cytoplasmic sperm injection using round-headed spermatozoa and assisted oocyte activation in a globozoospermic patient in mosaic Down syndrome, Fertil. Steril., 2001, vol. 75, pp. 445—447.  https://doi.org/10.1016/S0015-0282(00)01698-8
  162. 162.
    Aghajanova, L., Popwell, J.M., Chetkowski, R.J., and Herndon, C.N., Birth of a healthy child after preimplantation genetic screening of embryos from sperm of a man with non-mosaic Down syndrome, J. Assist. Reprod. Genet., 2015, vol. 32, pp. 1409—1413.  https://doi.org/10.1007/s10815-015-0525-z CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Academy of Molecular MedicineSt. PetersburgRussia

Personalised recommendations