Advertisement

Russian Journal of Genetics

, Volume 55, Issue 1, pp 52–60 | Cite as

Genetic Features of the Tomato Marker Line Мо938

  • R. A. KomakhinEmail author
  • S. R. Strelnikova
  • A. A. Zhuchenko
PLANT GENETICS
  • 1 Downloads

Abstract

In cultivated tomato hybrids (Marglobe × Mo938), the anthocyanin-free gene shows linked inheritance with the d (dwarf) gene on chromosome 2, but with a recombination frequency approximately three times higher than that according to the genetic map and in other hybrids with the Marglobe line. Cytological analysis of the mother pollen cells of the hybrids (Marglobe × Mo938) revealed no abnormalities of meiotic division and segregation of chromosomes, as well as no decrease in fertility. By means of the functional allelism test, it was established that, unlike Mo500, Mo504, and Mo755 marker tomato lines, in Mo938 the anthocyanin-free trait is not determined by the aw (anthocyanin without) or aa (anthocyanin absent) genes of chromosome 2. Using the F2 progeny of interspecies hybrids (Mo938 × Solanum pimpinellifolium), independent inheritance of the anthocyanin-free gene relative to the wv (white virescent) and d marker genes, as well as to six SSR anchor markers distributed at different sites of chromosome 2, was established. Thus, the Mo938 tomato line carries the d and wv markers on chromosome 2, as well as the anthocyanin-free gene not belonging to chromosome 2.

Keywords:

tomato Solanum lycopersicum Solanum pimpinellifolium hybrids genetic map gene SSR recombination 

Notes

REFERENCES

  1. 1.
    Mézard, C., Vignard, J., Drouaud, J., and Mercier, R., The road to crossovers: plants have their say, Trends Genet., 2007, vol. 23, no. 2, pp. 91—99.  https://doi.org/10.1016/j.tig.2006.12.007 CrossRefGoogle Scholar
  2. 2.
    Zhuchenko, A.A. and Korol’, A.B., Rekombinatsiya v evolyutsii i selektsii (Recomdination in Evolution and Breeding), Moscow: Nauka, 1985, pp. 117—125.Google Scholar
  3. 3.
    Zhuchenko, A.A., Genetika tomatov (Genetics of Tomatoes), Chisinau: Shtiintsa, 1973.Google Scholar
  4. 4.
    Shirasawa, K. and Hirakawa, H., DNA marker applications to molecular genetics and genomics in tomato, Breed. Sci., 2013, vol. 63, no. 1, pp. 21—30.  https://doi.org/10.1270/jsbbs.63.21 CrossRefGoogle Scholar
  5. 5.
    Rick, C.M., Tomato, Lycopersicon esculentum (Solanaceae), in Evolution of Crop Plants, Smartt, J. and Simmonds, N.W., Eds., London: Longman, 1995, pp. 452—457.Google Scholar
  6. 6.
    Foolad, M.R., Genome mapping and molecular breeding of tomato, Int. J. Plant Genomics, 2007, vol. 2007, article ID 64358.  https://doi.org/10.1155/2007/64358 Google Scholar
  7. 7.
    Strel’nikova, C.R., Frequency chiasm evaluation in wild species, mutant forms, and F1 hybrids of tomatoes, Cand. Sci. (Biol.) Dissertation, Moscow: Moscow Timiryazev Agricultural Academy, 2001.Google Scholar
  8. 8.
    Komakhin, R.A., Komakhina, V.V., Milyukova, N.A., et al., Transgenic tomato plants expressing recA and NLS-recA-licBM3 genes as a model for studying meiotic recombination, Russ. J. Genet., 2010, vol. 46, no. 12, pp. 1440—1448.  https://doi.org/10.1134/S1022795410120069.CrossRefGoogle Scholar
  9. 9.
    Komakhin, R.A., Komakhina, V.V., Milyukova, N.A., and Zhuchenko, A.A., Analysis of the meiotic recombination frequency in transgenic tomato hybrids expressing recA and NLS-recA-licBM3 genes, Russ. J. Genet., 2012, vol. 48, no. 1, pp. 23—31.  https://doi.org/10.1134/S1022795411110093.CrossRefGoogle Scholar
  10. 10.
    Zhuchenko, A.A., Korol’, A.B., Vizir, I.Yu., et al., Sex differences in crossover frequency for tomato and Arabidopsis, Genetika (Moscow), 1988, vol. 24, no. 9, pp. 1593—1601.Google Scholar
  11. 11.
    Bocharnikova, N.I. and Kozlova, V.M., Mutantnye formy tomatov (Mutant Forms of Tomato), Shtiintsa, 1992.Google Scholar
  12. 12.
    Bocharnikova, N.I. Geneticheskaya kollektsiya mutantnykh form tomata i ee ispol’zovanie v selektsionno-geneticheskikh issledovaniyakh (Genetic Collection of Mutant Tomato Forms and Its Usage in Breeding and Genetic Studies), Moscow: Federal’nyi Nauchnyi Tsentr Ovoshchevodstva, 2011.Google Scholar
  13. 13.
    Orlova, N.N., Geneticheskii analiz (Genetic Analysis), Moscow: Mosk. Gos. Univ., 1991.Google Scholar
  14. 14.
    Lorieux, M., MapDisto: fast and efficient computation of genetic linkage maps, Mol. Breed., 2012, vol. 30, no. 2, pp. 1231—1235.  https://doi.org/10.1007/s11032-012-9706-y CrossRefGoogle Scholar
  15. 15.
    Murray, M.G. and Thompson, W.F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, pp. 4321—4325.  https://doi.org/10.1093/nar/8.19.4321 CrossRefGoogle Scholar
  16. 16.
    Shirasawa, K., Isobe, S., Hirakawa, H., et al., SNP discovery and linkage map construction in cultivated tomato, DNA Res., 2010, no. 6, pp. 381—391.  https://doi.org/10.1093/dnares/dsq024
  17. 17.
    Frary, A., Xu, Y., Liu, J., et al., Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments, Theor. Appl. Genet., 2005, vol. 111, no. 2, pp. 291—312.  https://doi.org/10.1007/s00122-005-2023-7 CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Zhou, T., Ge, H., et al., SSR mapping of QTLs conferring cold tolerance in an interspecific cross of tomato, Int. J. Genomics, 2016, vol. 2016, article ID 3219276.  https://doi.org/10.1155/2016/3219276 CrossRefGoogle Scholar
  19. 19.
    Grati, V.G. and Grati, M.I., Pachytene chromosome analysis in three tomato species, Tsitologiya, 1980, vol. 27, no. 8, pp. 933—939.Google Scholar
  20. 20.
    Yachevskaya, G.L., Ivanova, S.V., and Naumov, A.A., Osobennosti meioza pri otdalennoi gibridizatsii (Specific Features of Meiosis in Distant Hybridization), Moscow: Moscow Timiryazev Agricultural Academy, 1990.Google Scholar
  21. 21.
    Tanksley, S.D., Ganal, M.W., Prince, J.P., et al., High density molecular linkage maps of the tomato and potato genomes, Genetics, 1992, vol. 132, no. 4, pp. 1141—1160.Google Scholar
  22. 22.
    Torgasheva, A.A., Rubtsov, N.B., and Borodin, P.M., Recombination and synaptic adjustment in oocytes of mice heterozygous for a large paracentric inversion. Chromosome Res., 2013, vol. 21, no. 1, pp. 37—48.  https://doi.org/10.1007/s10577-012-9336-6 CrossRefGoogle Scholar
  23. 23.
    Koehler, K.E., Millie, E.A., Cherry, J.P., et al., Meiotic exchange and segregation in female mice heterozygous for paracentric inversions, Genetics, 2004, vol. 166, no. 3, pp. 1199—1214.  https://doi.org/10.1534/genetics.166.3.1199 CrossRefGoogle Scholar
  24. 24.
    Anderson, L.K., Covey, P.A., Larsen, L.R., et al., Structural differences in chromosomes distinguish species in the tomato clade, Cytogenet. Genome Res., 2010, vol. 129, nos. 1—3, pp. 24—34.  https://doi.org/10.1159/000313850 CrossRefGoogle Scholar
  25. 25.
    Gorlov, I.P. and Borodin, P.M., Recombination in single and double heterozygotes for two partially overlapping inversions in chromosome 1 of the house mouse, Heredity, V. 75, no. 2, pp. 113—125.  https://doi.org/10.1038/hdy.1995.114
  26. 26.
    Folge, H.W. and Currence, T.M., Inheritance of fruit weight and earliness in tomato cross, Genetics. 1950, vol. 35, no. 3, pp. 363—380.Google Scholar
  27. 27.
    Peng, J., Korol, A.B., Fahima, T., et al., Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage, Genome Res., 2000, vol. 10, no. 10, pp. 1509—1531.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • R. A. Komakhin
    • 1
    Email author
  • S. R. Strelnikova
    • 1
  • A. A. Zhuchenko
    • 1
  1. 1.All-Russia Research Institute of Agricultural BiotechnologyMoscowRussia

Personalised recommendations