Skip to main content
Log in

Phylogenetic Analysis of Kyrgyz Horse Using 17 Microsatellite Markers

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract—The results of this study are the first in assessing the subpopulation subdivision of the Kyrgyz horse breed. Horse genotyping was performed using 17 microsatellite loci recommended by the International Society for Animal Genetics. On the basis of the results of genotyping using the AMOVA method, paired genetic distances for horses of the Kyrgyz breed in relation to 31 other breeds were calculated. It is shown that horses of the Kyrgyz breed are genetically the closest to the Welsh pony and Warmblood horse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Voronkova, V.N., Evaluation of the genetic diversity of horses from Altai—Sayan region using nuclear and mitochondrial DNA markers: Extended Abstract of Cand. Sci. Dissertation, Inst. Obshch. Genet., Moscow, 2012.

  2. Warmuth, V., Eriksson, A., Bower, M.A., et al., European domestic horses originated in two holocene refugia, PLoS One, 2011, vol. 30, pp. 1–7. e18194. https://doi.org/10.1371/journal.pone.0018194

  3. Livanova, T.K. and Livanova, M.A., Vse o loshadi (All about Horses), Moscow: AST-Press, 2002.

    Google Scholar 

  4. Molecular genetic characterization of animal genetic resources, FAO Animal Production and Health Guidelines, no. 9. FAO, 2011.

  5. Stolpovskii, Yu.A., The concept and principles of genetic monitoring for the in situ conservation of domesticated animal breeds, S.-kh. Biol., 2010, no. 6, pp. 3–8.

  6. Olsen, S.L., Early horse domestication on the Eurasian steppe, Documenting Domestication: New Genetics and Archaeological Paradigms, Zeder, M.A., Emshwiller, E., Smith, B.D., and Bradley, D.G., Eds., Univ. California Press, 2006, рр. 245–269.

  7. Vilà, C., Leonard, J.A., Götherström, S., et al., Widespread origins of domestic horse lineages, Science, 2001, vol. 291, no. 5503, pp. 474–477. https://doi.org/10.1126/science.291.5503.474

    Article  PubMed  Google Scholar 

  8. Jansen, T., Foster, P., Levine, M.A., et al., Mitochondrial DNA and the origins of the domestic horse, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 16, pp. 10905–10910. https://doi.org/10.1073/pnas.152330099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ripar, Zh., Uatto, S., and Perez, S., Kyrgyzskaya loshad’, sokhraneniye i ispol’zovaniye skachki na vynoslivost’ i ekoturizm: prakticheskoye ukazaniye (Kyrgyz Horse, Conservation and Usage of Endurance Racing and Ecotourism: Practical Instruction), Bishkek, 2007.

  10. Isakova, Zh.T., Toktosunov, B.I., Kipen’, V.N., et al., Genetic portrait of the Kyrgyz horse, Konevod. Konnyi Sport, 2018, no. 1, pp. 21–23.

  11. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537—2539. https://doi.org/10.1093/bioinformatics/bts460

  12. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammer, Q., Harper, A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, pp. 1—9.

    Google Scholar 

  14. Francis, R.M., POPHELPER: an R package and web app to analyse and visualize population structure, Mol. Ecol. Res., 2017, vol. 17, pp. 27–32. https://doi.org/10.1111/1755-0998.12509

    Article  CAS  Google Scholar 

  15. Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, vol. 131, pp. 479–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Van De Goor, L.H.P., Panneman, H., and Van Haeringen, W.A., A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci, Anim. Genet., 2010, vol. 41, no. 2, pp. 122–127. https://doi.org/10.1111/j.1365-2052.2009.01975.x

    Article  CAS  PubMed  Google Scholar 

  17. Zharkikh, A., Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: 1. Four taxa with a molecular clock, Mol. Biol. Evol., 1992, vol. 9, no. 6, pp. 1119–1147. https://doi.org/10.1093/oxfordjournals.molbev.a040782

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zh. T. Isakova or V. N. Kipen.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, Z.T., Toktosunov, B.I., Kipen, V.N. et al. Phylogenetic Analysis of Kyrgyz Horse Using 17 Microsatellite Markers. Russ J Genet 55, 100–104 (2019). https://doi.org/10.1134/S1022795419010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419010071

Keywords:

Navigation