Russian Journal of Genetics

, Volume 55, Issue 1, pp 79–88 | Cite as

An Analysis of Microsatellite Polymorphism in the Population of the Arctic Rainbow Smelt Osmerus dentex from Eastern and Western Kamchatka

  • A. V. SemenovaEmail author
  • A. N. Stroganov
  • A. V. Bugaev
  • G. A. Rubtsova
  • A. M. Malyutina


The genetic diversity of ten microsatellite loci is examined in samples of Arctic rainbow smelt. The expected heterozygosity estimates vary in the range of 12.6–83.9% (mean 55.3%). The degree of genetic differentiation is statistically significant: θ = 2.8%, 95% CI (1.4–4.9%). The greatest differences are found between datasets of smelt in Eastern and Western Kamchatka. The samples from Lake Nerpich’e demonstrate the maximum estimates of divergence from the other datasets from both the western and eastern coasts.


population genetic structure microsatellites Arctic rainbow smelt Osmerus dentex Kamchatka 



  1. 1.
    Nellbring, S., The ecology of smelts (genus Osmerus): a literature review, Nordic J. Freshwater Res., 1989, vol. 65, pp. 116—145.Google Scholar
  2. 2.
    Taylor, E.B. and Dodson, J.J., A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus), Mol. Ecol., 1994, vol. 3, no. 3, pp. 235—248.CrossRefGoogle Scholar
  3. 3.
    Andriyashev, A.P. and Chernova, N.V., Annotated list of pisciforms and fishes of the arctic seas and adjacent waters, J. Ichthyol., 1994, vol. 35, no. 1, pp. 81—123.Google Scholar
  4. 4.
    Vasilets, P.M., Smelts of the Kamchatka coastal waters, Cand. Sci. (Biol.) Dissertation, Vladivostok: Inst. Biol. Morya Dal’nevost. Otd. Ross. Akad. Nauk, 2000, p. 192.Google Scholar
  5. 5.
    Klyukanov, V.A., Morphological principles of the smelts’ systematics, genus Osmerus (Osmeridae), Zool. Zh., 1969, vol. 48, no. 1, pp. 99—109.Google Scholar
  6. 6.
    Chereshnev, I.A., Biologicheskoe raznoobrazie presnovodnoi ikhtiofauny Severo-Vostoka Rossii (Biological Diversity Freshwater Ichthyofauna of Northeast Russia), Vladivostok: Dal’nauka, 1996.Google Scholar
  7. 7.
    Parin, N.V., Evseenko, S.A., and Vasil’eva, E.D., Ryby morei Rossii: annotirovannyi katalog (Fishes of Russia Seas: Annotated Catalog), vol. 53 of Sbornik trudov Zoologitcheskogo muzeya MGU (Papers Collection of Zoological Museum of Moscow State University), Moscow: KMK, 2014.Google Scholar
  8. 8.
    Vasilets, P.M., Trofimov, I.K., and Raevskii, R.V., Morphological differentiation of rainbow smelt, Osmerus mordax dentex, in Kamchatka waters, Tr. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2000, no. 5, pp. 101—105.Google Scholar
  9. 9.
    Chereshnev, I.A., Volobuev, V.V., Shestakov, A.V., and Frolov, S.V., Lososevidnye ryby Severo-Vostoka Rossii (Salmonid Fishes of Northeast Russia), Vladivostok: Dal’nauka, 2002.Google Scholar
  10. 10.
    Bugaev, V.F., Ryby basseina reki Kamchatki (Fishes of the Kamchatka River Basin), Petropavlovsk-Kamchatskii: Kamchatpress, 2007.Google Scholar
  11. 11.
    Bugaev, A.V., Amel’chenko, Yu.N., and Lipnyagov, S.V., Asian rainbow smelt Osmerus mordax dentex in the shelf zone and inland waters of Kamchatka: the state of resources, fishing and biological structure Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2014, vol. 178, pp. 3—24.Google Scholar
  12. 12.
    Kovpak, N.E., Skurikhina, L.A., Kukhlevsky, A.D., et al., Genetic divergence and relationships among smelts of the genus Osmerus from the Russian waters, Russ. J. Genet., 2011, vol. 47, no. 8, pp. 958–972.
  13. 13.
    Skurikhina, L.A., Oleinik. A.G., Kukhlevskii A.D., et al., Genetic differentiation of Pacific smelt Osmerus mordax dentex inferred from the data of mitochondrial DNA analysis, Russ. J. Genet., 2015, vol. 51, no. 12, pp. 1221—1232. Scholar
  14. 14.
    Allendorf, F.W., Genetics and the conservation of natural populations: allozymes to genomes, Mol. Ecol., 2017, vol. 26, no. 2, pp. 420—430. CrossRefGoogle Scholar
  15. 15.
    Coulson, M.W., Paterson, I.G., Green, A., et al., Characterization of di- and tetranucleotide microsatellite markers in rainbow smelt (Osmerus mordax), Mol. Ecol. Res., 2006, vol. 6, no. 3, pp. 942—944. Google Scholar
  16. 16.
    Fisch, K.M., Petersen, J.L., Baerwald, M.R., et al., Characterization of 24 microsatellite loci in delta smelt, Hypomesus transpacificus, and their cross-species amplification in two other smelt species of the Osmeridae family, Mol. Ecol. Res., 2009, vol. 9, no. 1, pp. 405—408. CrossRefGoogle Scholar
  17. 17.
    Kaukinen, K.H., Supernault, K.J., and Miller, K.M., Development of microsatellite loci in eulachon (Thaleichthys pacificus), Mol. Ecol. Res., 2004, vol. 4, no. 4, pp. 632—634. Google Scholar
  18. 18.
    Ye, J., Coulouris, G., Zaretskaya, I., et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinf., 2012, vol. 13, no. 1, p. 134.CrossRefGoogle Scholar
  19. 19.
    Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., and Shipley, P., MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes, 2004, vol. 4, pp. 535—538. CrossRefGoogle Scholar
  20. 20.
    Chapuis, M.P. and Estoup, A., Microsatellite null alleles and estimation of population differentiation, Mol. Biol. Evol., 2007, vol. 24, pp. 621—631. CrossRefGoogle Scholar
  21. 21.
    Ryman, N. and Palm, S., POWSIM: a computer program for assessing statistical power when testing for genetic differentiation, Mol. Ecol. Notes, 2006, vol. 6, no. 3, pp. 600—602.
  22. 22.
    Ryman, N., Palm, S., André, C., et al., Power for detecting genetic divergence: differences between statistical methods and marker loci, Mol. Ecol., 2006, vol. 15, no. 8, pp. 2031—2045. CrossRefGoogle Scholar
  23. 23.
    Semenova, A.V., Karpov, A.K., Andreeva, A.P., et al., Temporal stability of the population genetic structure of the White Sea herring Clupea pallasii marisalbi, Russ. J. Genet., 2017, vol. 53, no. 1, pp. 100—107. Scholar
  24. 24.
    Lewis, P.O. and Zaykin, D., Genetic Data Analysis: computer program for the analysis of allelic data. Version 1.0 (d 16c), 2001. Free program distributed by the authors over the internet. http://lewis.eeb.unconn. edu/lewishome/software.html.Google Scholar
  25. 25.
    Rousset, F., Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux, Mol. Ecol. Res., 2008, vol. 8, pp. 103—106.CrossRefGoogle Scholar
  26. 26.
    Goudet, J., FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3), 2001. Scholar
  27. 27.
    Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, pp. 209—220.Google Scholar
  28. 28.
    Piry, S., Luikart, G., and Cornuet, J.M., Computer note: BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data, J. Hered., 1999, vol. 90, no. 4, pp. 502—503.CrossRefGoogle Scholar
  29. 29.
    Cornuet, J.M. and Luikart, G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics, 1996, vol. 144, no. 4, pp. 2001—2014.Google Scholar
  30. 30.
    Bradbury, I.R., Coulson, M.W., Campana, S.E., et al., Contemporary nuclear and mitochondrial genetic clines in a north temperate estuarine fish reflect Pleistocene vicariance, Mar. Ecol. Prog. Ser., 2011, vol. 438, pp. 207—218. CrossRefGoogle Scholar
  31. 31.
    Coulson, M.W., Bradbury, I.R., and Bentzen, P., Temporal genetic differentiation: continuous v. discontinuous spawning runs in anadromous rainbow smelt Osmerus mordax (Mitchill), J. Fish Biol., 2006, vol. 69 (sc), pp. 209—216.
  32. 32.
    Curry, R.A., Currie, S.L., Bernatchez, L., and Saint-Laurent, R., The rainbow smelt, Osmerus mordax, complex of Lake Utopia: threatened or misunderstood?, Environ. Biol. Fish., 2004, vol. 69, pp. 153—166.CrossRefGoogle Scholar
  33. 33.
    Bradbury, I.R., Coulson, M.W., Campana, S.E., and Bentzen, P., Morphological and genetic differentiation in anadromous smelt Osmerus mordax (Mitchill): disentangling the effects of geography and morphology on gene flow, J. Fish Biol., 2006, vol. 69 (sc), pp. 95—114.
  34. 34.
    Kovach, A.I., Breton, T.S., Enterline, C., and Berlinsky, D.L., Identifying the spatial scale of population structure in anadromous rainbow smelt (Osmerus mordax), Fish. Res., 2013, vol. 141, pp. 95—106. CrossRefGoogle Scholar
  35. 35.
    Bradbury, I.R., Campana, S.E., and Bentzen, P., Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches, Mol. Ecol., 2008, vol. 17, no. 6, pp. 1438—1450. CrossRefGoogle Scholar
  36. 36.
    Bradbury, I.R., Snelgrove, P.V.R., Bentzen, P., et al., Structural and functional connectivity of marine fishes within a semi-enclosed Newfoundland fjord, J. Fish Biol., 2009, vol. 75, no. 6, pp. 1393—1409. CrossRefGoogle Scholar
  37. 37.
    Hedrick, P.W., Genetic polymorphism in heterogeneous environments: a decade later, Annu. Rev. Ecol. Syst., 1986, vol. 17, pp. 535—566.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Semenova
    • 1
    Email author
  • A. N. Stroganov
    • 1
  • A. V. Bugaev
    • 2
  • G. A. Rubtsova
    • 3
  • A. M. Malyutina
    • 1
  1. 1.Faculty of Biology, Moscow State UniversityMoscowRussia
  2. 2.Kamchatka Scientific Institute of Fisheries and OceanographyPetropavlovsk-KamchatskyRussia
  3. 3.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations