Russian Journal of Genetics

, Volume 55, Issue 1, pp 61–70 | Cite as

Genetic Analysis of Turkey Common Bean (Phaseolus vulgaris L.) Genotypes by Simple Sequence Repeats Markers

  • Ö. BilirEmail author
  • C. Yüksel Özmen
  • S. Özcan
  • U. Kibar


Common bean (Phaseolus vulgaris L.), besides being an agricultural product that can be consumed as fresh vegetable, is a significant legume widely being planted in both Turkey and world. Because of having different usage areas, it is being considered as a valuable plant for human nutrition, trade and in many respects. In this study, we aimed at genetically characterization of the local and registered common bean genotypes and population structure of genotype groups belong to these common bean genotypes in Turkey. For this purpose, total 102 common bean genotypes including 93 local genotypes from 8 provinces, 7 cultivars and 2 reference cultivars were analyzed by 13 fluorescent SSR markers. As the result of the study, it was determined that the total SSR allele number was 192 and the average allele number was 14.8. While it was found that there were no synonymous genotypes, the highest heterozygosity rate was determined in three loci. Factorial correspondence analysis partially demonstrated substructure among common bean genotype groups. Structure analysis showed the same results as the Nm values and the Fst values. In the study, it was observed that SSR markers could be easily used in the molecular studies of common bean germplasm. The obtained results will be able to be used at the conservation, utilization of local common bean genetic resources and at the marker assisted selection studyings.


common bean (Phaseolus vulgaris L.) genetic analysis SSR Turkey 


  1. 1.
    Diaz-Camino, C., Annamalai, P., Sanchez, F., et al., An effective virus-based gene silencing method for functional genomics studies in common bean, Plant Methods, 2011, vol. 7, no. 1, pp. 1—11. CrossRefGoogle Scholar
  2. 2.
    Broughton, W.J., Hernandez, G., Blair, M., et al., Beans (Phaseolus spp.)—model food legumes, Plant and Soil, 2003, vol. 252, no. 1, pp. 55—128. CrossRefGoogle Scholar
  3. 3.
    Bozoglu, H. and Sozen, O., A sample for biodiversity in Turkey: common bean (Phaseolus vulgaris L.) landraces from Artvin, Afr. J. Biotechnol., 2011, vol. 10, no. 36, pp. 13789—13796. CrossRefGoogle Scholar
  4. 4.
    Türkiye İstatistik Kurumu (Tuik), Bitkisel Üretim İstatistikleri, 2016. Scholar
  5. 5.
    Food and Agriculture Organization of the United Nations (FAO), FAOSTAT data, 2014. Scholar
  6. 6.
    Akdağ, C. and Düzdemir, O., Türkiye kuru fasulye (Phaseolus vulgaris L.) gen kaynaklarının karakterizasyonu: 1. Bazı morfolojik ve fenolojik özellikleri, Gaziosmanpaşa Üniv. Ziraat Fak. Dergisi, 2001, vol. 18, no. 1, pp. 95—100.Google Scholar
  7. 7.
    Ammar, M.H., Alghamdi, S.S., Migdadi, H.M., et al., Assessment of genetic diversity among faba bean genotypes using agro-morphological and molecular markers, Saudi J. Biol. Sci., 2015, vol. 22, no. 3, pp. 340—350. CrossRefGoogle Scholar
  8. 8.
    Jose, F.C., Mohammed, M.M.S., Thomas, G., et al., Genetic diversity and conservation of common bean (Phaseolus vulgaris L., Fabaceae) landraces in Nilgiris, Curr. Sci., 2009, vol. 97, no. 2, pp. 227—235.Google Scholar
  9. 9.
    Gill-Langarica, H.R., Muruaga-Martinez, J.S., Vargas-Vazquez, M.L.P., et al., Genetic diversity analysis of common beans based on molecular markers, Genet. Mol. Biol., 2011, vol. 34, no. 4, pp. 595—605. CrossRefGoogle Scholar
  10. 10.
    Powell, W., Morgante, M., Andre, C., et al., The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Mol. Breed., 1996, vol. 2, no. 3, pp. 225—238. CrossRefGoogle Scholar
  11. 11.
    Sarıkamış, G., Yaşar, F., Bakır, M., et al., Genetic characterization of green bean (Phaseolus vulgaris L.) genotypes from eastern Turkey, Genet. Mol. Res., 2009, vol. 8, no. 3, pp. 880—887. CrossRefGoogle Scholar
  12. 12.
    Ince, A.G. and Karaca, M., Genetic variation in common bean landraces efficiently revealed by Td-DAMD-PCR markers, Plant Omics, 2011, vol. 4, no. 4, pp. 220—227.Google Scholar
  13. 13.
    Khaidizar, M.I., Haliloglu, K., Elkoca, E., et al., Genetic diversity of common bean (Phaseolus vulgaris L.) landraces grown in Northeast Anatolia of Turkey assessed with simple sequence repeat markers, Turk. J. Field Crops, 2012, vol. 17, no. 2, pp. 145—150.Google Scholar
  14. 14.
    Ulukapı, K. and Onus, A.N., Molecular characterization of some selected landrace green bean (Phaseolus vulgaris L.) genotypes, J. Agric. Sci., 2012, vol. 18, no. 4, pp. 277—286.Google Scholar
  15. 15.
    Yu, K., Park, S.J., Poysa, V., and Gepts, P., Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.), J. Hered., 2001, vol. 91, no. 6, pp. 429—434.CrossRefGoogle Scholar
  16. 16.
    Blair, M.W., Giraldo, M.C., Buendia, H.F., et al., Microsatellite marker diversity in common bean (Phaseolus vulgaris L.), Theor. Appl. Genet., 2006, vol. 113, no. 1, pp. 100—109. CrossRefGoogle Scholar
  17. 17.
    Maras, M., Susnik, S., Meglic, V., and Sustar-Vozlic, J., Characterization and genetic diversity changes in the Slovenian common bean, Cesnjevec landrace, Acta Biol. Cracov Bot., 2006, vol. 48, no. 2, pp. 39—47.Google Scholar
  18. 18.
    Lefort, F., Lally, M., Thompson, D., and Douglas, G.C., Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland, Silvae Genet., 1998, vol. 47, no. 5—6, pp. 257—262.Google Scholar
  19. 19.
    Gaitan-Solis, E., Duque, M.C., Edwards, K.J., and Tohme, J., Microsatellite repeats in common bean (Phaseolus vulgaris), Crop Sci., 2002, vol. 42, no. 6, pp. 2128—2136. CrossRefGoogle Scholar
  20. 20.
    Loridon, K., McPhee, K., Morin, J., et al., Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.), Theor. Appl. Genet., 2005, vol. 111, no. 6, pp. 1022—1031. CrossRefGoogle Scholar
  21. 21.
    Wagner, H.W. and Sefc, K.M., IDENTITY 1.0, Vienna: Centre for Applied Genetics, University of Agricultural Sciences, 1999.Google Scholar
  22. 22.
    Paetkau, D., Calvert, W., Stirling, I., and Strobeck, C., Microsatellite analysis of population structure in Canadian polar bears, Mol. Ecol., 1995, vol. 4, no. 3, pp. 347—354.CrossRefGoogle Scholar
  23. 23.
    Minch, E., Ruiz-Linares, A., Goldstein, D., et al., Microsat (version 1.4d): A Computer Program for Calculating Various Statistics on Microsatellite Allele Data, Stanford, California: University of Stanford, 1995. Scholar
  24. 24.
    Bowcock., A.M., Ruiz-Linares, A., Tomfohrde, J., et al., High resolution of human evolutionary tress with polymorphic microsatellites, Nature, 1994, vol. 368, no. 6470, pp. 455—457. CrossRefGoogle Scholar
  25. 25.
    Rohlf, F.J., NTSYS-pc: Numerical Taxonomy and Multivariate Analysis: Version 2.02, Setauket: Exeter Software, 1998.Google Scholar
  26. 26.
    Sneath, P.H.A. and Sokal, R.R., Numerical Taxonomy: The Principles and Practice of Numerical Classification, San Francisco, 1973.Google Scholar
  27. 27.
    Belkhir, K., Borsa, P., Goudet, J., et al., GENETIX, logiciel sous WindowsTM pour la genetique des populations, Laboratoire Genome Populations, 1996–1998, Montpellier: CNRS UPR 9060, Universite de Montpellier II. Free program distributed by the authors over the internet. Scholar
  28. 28.
    Excoffier, L., Laval, G., and Schneider, S., Arlequin (version 3.0): an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50.CrossRefGoogle Scholar
  29. 29.
    Rohlf, F.J., NTSYS-pc: Numerical Taxonomy System, Version 2.1, Setauket: Exeter, 2002.Google Scholar
  30. 30.
    Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945—959.Google Scholar
  31. 31.
    Falush, D., Stephens, M., and Pritchard, J.K., Inference of population structure: extensions to linked loci and correlated allele frequencies, Genetics, 2003, vol. 164, no. 4, pp. 1567—1587.Google Scholar
  32. 32.
    Corander, J., Marttinen, P., Sir’en, J., and Tang, J., Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations, BMC Bioinformatics, 2008, vol. 9, no. 539, pp. 1—14. CrossRefGoogle Scholar
  33. 33.
    Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283—292.CrossRefGoogle Scholar
  34. 34.
    Martinez, L.F.G., Evaluación de la diversidad genética en una colección de germoplasma de frijol común (Phaseolus vulgaris L.) de Ruanda (Africa), Ciencias Sci. (Biol.) Dissertation, Bogota: Pontificia Universidad Javeriana, 2008. Scholar
  35. 35.
    Blair, M.W., Gonzalez, L.F., Kimani, P.M., and Butare, L., Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa, Theor. Appl. Genet., 2010, vol. 121, no. 2, pp. 237—248. CrossRefGoogle Scholar
  36. 36.
    Blair, M.W., Diaz, J.M., Hidalgo, R., and Diaz, L.M., Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.), Theor. Appl. Genet., 2007, vol. 116, no. 1, pp. 29—43. CrossRefGoogle Scholar
  37. 37.
    Blair, M.W., Soler, A., and Cortes, A.J., Diversification and population structure in common beans (Phaseolus vulgaris L.), PLoS One, 2012, vol. 7, no. 11.
  38. 38.
    Diaz, L.M. and Blair, M.W., Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers, Theor. Appl. Genet., 2006, vol. 114, no. 4, pp. 143—154. CrossRefGoogle Scholar
  39. 39.
    Burle, M.L., Fonseca, J.R., Kami, J.A., and Gepts, P., Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity, Theor. Appl. Genet., 2010, vol. 121, no. 5, pp. 801—813. CrossRefGoogle Scholar
  40. 40.
    Shabib, J.M., Shehata, A.I., Al-Hazzani, A.A., and Al-Rumaih, M., Assessment the genetic diversity of common bean Phaseolus vulgaris collection by microsatellite SSR markers, Afr. J. Agric. Res., 2013, vol. 8, no. 40, pp. 5032—5046. Google Scholar
  41. 41.
    Cabral, P.D.S., Soares, T.C.B., Lima, A.B.P., et al., Genetic diversity in local and commercial dry bean (Phaseolus vulgaris L.) genotypes based on microsatellite markers, Genet. Mol. Res., 2011, vol. 10, no. 1, pp. 140—149. CrossRefGoogle Scholar
  42. 42.
    Ceylan, A., Öcal, N., and Akbulut, M., Genetic diversity among the Turkish common bean cultivars (Phaseolus vulgaris L.) as assessed by SRAP, POGP and cpSSR markers, Biochem. Syst. Ecol., 2014, vol. 54, pp. 219—229. CrossRefGoogle Scholar
  43. 43.
    Okii, D., Tukamuhabwa, P., Kami, J., et al., The genetic diversity and population structure of common bean (Phaseolus vulgaris L.) germplasm in Uganda, Afr. J. Biotechnol., 2014, vol. 13, no. 29, pp. 2935—2949. CrossRefGoogle Scholar
  44. 44.
    Asfaw, A., Blair, M.W., and Almekinders, C., Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African Highlands, Theor. Appl. Genet., 2009, vol. 120, no. 1, pp. 1—12. CrossRefGoogle Scholar
  45. 45.
    Madakbaş, S.Y., Sarıkamış, G., Başak, H., et al., Genetic characterization of green bean (Phaseolus vulgaris L.) accessions from Turkey with SCAR and SSR markers, Biochem. Genet., 2016, vol. 54, no. 4, pp. 495—505. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • Ö. Bilir
    • 1
    Email author
  • C. Yüksel Özmen
    • 2
  • S. Özcan
    • 3
  • U. Kibar
    • 4
  1. 1.Department of Biotechnology, Directorate of Trakya Agricultural Research InstituteEdirneTurkey
  2. 2.Biotechnology Institute, Ankara UniversityAnkaraTurkey
  3. 3.Department of Field Crops, Faculty of Agriculture, Ankara UniversityAnkaraTurkey
  4. 4.Agriculture and Rural Development Support InstitutionAnkaraTurkey

Personalised recommendations