Advertisement

Russian Journal of Genetics

, Volume 55, Issue 1, pp 45–51 | Cite as

Genetic Diversity and Phylogeny of Root Nodule Bacteria Isolated from Nodules of Plants of the Lupinaster Genus Inhabiting the Southern Urals

  • An. Kh. BaymievEmail author
  • E. S. Akimova
  • R. S. Gumenko
  • A. A. Vladimirova
  • A. A. Muldashev
  • A. V. Chemeris
  • Al. Kh. Baymiev
GENETICS OF MICROORGANISMS
  • 3 Downloads

Abstract

The genetic diversity and phylogeny of root nodule bacteria, microsymbionts of plants of the genus Lupinaster Adans. (L. albus Link and L. pentaphyllus Moench), were studied, and also their symbiotic genes were analyzed. The bacterial strains studied were shown to be phylogenetically different; however, all of them are related to the Mezorhizobium genus with the exception of the single strain which is related to the Rhizobium genus. Analysis of the symbiotic genes nifH and nodC revealed their high homology among all strains independently of strain phylogeny, as well as the phylogenetic relation of these genes to those of Mezorhizobium. Mezorhizobium bacteria are likely specific microsymbionts of these plants, while the Rhizobium strain acquired its symbiotic genes and became capable of nodule formation in Lupinaster plants through horizontal gene transfer. Thus, the genetic composition of nodule bacteria inhabiting Lupinaster plants represents additional support for the idea that they do not belong to the Trifolium genus.

Keywords:

nodule bacteria symbiotic genes phylogeny symbiosis legumes 

Notes

REFERENCES

  1. 1.
    Bobrov, E.G., Clover—Trifolium L., in Flora SSSR (Flora of the Soviet Union), Moscow: Akad. Nauk SSSR, 1945, vol. 11, pp. 189—261.Google Scholar
  2. 2.
    Bobrov, E.G., Lupinaster Adans, in Flora evropeiskoi chasti SSSR (Flora of the European Part of the USSR), Leningrad: Nauka, 1987, vol. 6, pp. 208—209.Google Scholar
  3. 3.
    Roskov, Yu.R., On the directions of evolution and the main taxonomic units in the Trifolium s. l. (Fabaceae) group, Bot. Zh., 1989, vol. 74, pp. 36—43.Google Scholar
  4. 4.
    Yakovlev, G.P., Bobovye zemnogo shara (Legumes of the Globe), Leningrad: Nauka, 1991.Google Scholar
  5. 5.
    Polozhii, A.V., Vydrina, S.N., and Kurbatskii, V.I., Flora Sibiri: Fabaceae (Leguminosae) (Flora of Siberia: Fabaceae (Leguminosae)), Novosibirsk: Nauka, 1994.Google Scholar
  6. 6.
    Bobrov, E.G., On the span of the genus Trifolium s. l., Bot. Zh., 1967, vol. 52, no. 11, pp. 1593—1599.Google Scholar
  7. 7.
    Mutch, L.A. and Young, J.P., Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes, Mol. Ecol., 2004, vol. 13, pp. 2435—2444.  https://doi.org/10.1111/j.1365-294X.2004.02259.x CrossRefGoogle Scholar
  8. 8.
    Roumiantseva, M.L., Andronov, E.E., Sharypova, L.A., et al., Diversity of Sinorhizobium meliloti from the Central Asian alfalfa gene center, Appl. Environ. Microbiol., 2002, vol. 68, pp. 4694—4697.  https://doi.org/10.1128/AEM.68.9.4694-4697.2002 CrossRefGoogle Scholar
  9. 9.
    Eardly, B., Elia, P., Brockwell, J., et al., Biogeography of a novel Ensifer meliloti clade associated with the Australian legume Trigonella suavissima, Appl. Environ. Microbiol., 2017, vol. 83. e03446-16.  https://doi.org/10.1128/AEM.03446-16 CrossRefGoogle Scholar
  10. 10.
    Andrews, M. and Andrews, M.E., Specificity in legume—rhizobia symbioses, Int. J. Mol. Sci., 2017, vol. 18, p. 705.  https://doi.org/10.3390/ijms18040705 CrossRefGoogle Scholar
  11. 11.
    Bailly, X., Olivieri, I., Brunel, B., et al., Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species, J. Bacteriol., 2007, vol. 189, pp. 5223—5236.  https://doi.org/10.1128/JB.00105-07 CrossRefGoogle Scholar
  12. 12.
    Sprent, J., Nodulation in legumes, Ann. Bot., 2002, vol. 89, no. 6, pp. 797—798.  https://doi.org/10.1093/aob/mcf128 CrossRefGoogle Scholar
  13. 13.
    Wdowiak-Wrobel, S., Marek-Kozaczuk, M., Kalita, M., et al., Diversity and plant growth promoting properties of rhizobia isolated from root nodules of Ononis arvensis, Antonie van Leeuwenhoek, 2017, vol. 110, pp. 1087—1103.  https://doi.org/10.1007/s10482-017-0883-x CrossRefGoogle Scholar
  14. 14.
    Baimiev, An.Kh., Ptitsyn, K.G., and Baimiev, Al.Kh., Influence of the introduction of Caragana arborescens on the composition of its root-nodule bacteria, Microbiology (Moscow), 2010, vol. 79, no. 1, pp. 115—120.  https://doi.org/10.1134/S0026261710010157 CrossRefGoogle Scholar
  15. 15.
    Williams, J.G., Kubelik, A.R., Livak, K.J., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res., 1990, vol. 18, no. 22, pp. 6531—6535.CrossRefGoogle Scholar
  16. 16.
    Laguerre, G.P., Mavingui, M.R., Allard, M.P., et al., Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2029—2036.Google Scholar
  17. 17.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, pp. 697—703.CrossRefGoogle Scholar
  18. 18.
    Baimiev, An.Kh., Ivanova, E.S., Gumenko, R.S., et al., Analysis of symbiotic genes of leguminous root nodule bacteria grown in the Southern Urals, Russ. J. Genet., 2015, vol. 51, no. 12, pp. 1172—1180.  https://doi.org/10.1134/S1022795415110034.CrossRefGoogle Scholar
  19. 19.
    Provorov, N.A., Vorob’ev, N.I., and Tikhonovich, I.A., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Evolutionary Genetics of Plant—Microbe Symbioses), St. Petersburg: Inform-Navigator, 2012.Google Scholar
  20. 20.
    Fred, E.B., Baldwin, I.L., and McCoy, E., Root Nodule Bacteria and Leguminous Plants, Madisson: Univ. Wisconsin Stud. Sci., 1932.Google Scholar
  21. 21.
    Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbioses of Plants and Microorganisms: Molecular Genetics of Future Agricultural Systems), St. Petersburg: St. Petersburg Gos. Univ., 2009.Google Scholar
  22. 22.
    Baimiev, An.Kh., Ivanova, E.S., Ptitsyn, K.G., Belimov, A.A., Safronova, V.I., and Baimiev, Al.Kh., Genetic characterization of wild legume nodule bacteria of the Southern Urals, Mol. Genet. Microbiol. Virol., 2012, vol. 27, no. 1, pp. 33—39.  https://doi.org/10.3103/S0891416812010028 CrossRefGoogle Scholar
  23. 23.
    Provorov, N.A. and Vorobyov, N.I., Evolution of symbiotic bacteria in “plant—soil” systems: interplay of molecular and population mechanisms, Progress in Environmental Microbiology, Kim, M.-B., Ed., New York: Nova Sci. Publ., 2008, pp. 11—67.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • An. Kh. Baymiev
    • 1
    Email author
  • E. S. Akimova
    • 1
  • R. S. Gumenko
    • 1
  • A. A. Vladimirova
    • 1
  • A. A. Muldashev
    • 2
  • A. V. Chemeris
    • 1
  • Al. Kh. Baymiev
    • 1
  1. 1.Insitute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of SciencesUfaRussia
  2. 2.Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of SciencesUfaRussia

Personalised recommendations