Advertisement

Russian Journal of Genetics

, Volume 54, Issue 12, pp 1385–1396 | Cite as

Genetic Aspects of Drug Resistance and Virulence in Mycobacterium tuberculosis

  • K. V. Shur
  • O. B. Bekker
  • M. V. Zaichikova
  • D. A. Maslov
  • N. I. Akimova
  • N. V. Zakharevich
  • M. S. Chekalina
  • V. N. Danilenko
REVIEWS AND THEORETICAL ARTICLES
  • 23 Downloads

Abstract

Drug-resistant Mycobacterium tuberculosis and its high virulence new strains present a global health threat. The solution of this problem requires the development of new anti-tuberculosis drugs. Investigation of the genetic mechanisms associated with the development of multidrug resistant M. tuberculosis strains is the basis for the search for new biotargets of anti-tuberculosis drugs. To date, the molecular genetic relationships between genes controlling drug resistance and virulence remain poorly investigated and require special attention. In the present study, genetic mechanisms of interaction of genetic systems of drug resistance and virulence of M. tuberculosis are considered.

Keywords:

Mycobacterium tuberculosis drug resistance virulence phylogenetics 

Notes

REFERENCES

  1. 1.
    WHO Global Tuberculosis Report 2017, WHO, 2017.Google Scholar
  2. 2.
    Coscolla, M. and Gagneux, S., Consequences of genomic diversity in Mycobacterium tuberculosis, Semin. Immunol., 2014, vol. 26, pp. 431—444. doi 10.1016/j.smim.2014.09.012CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Weniger, T., Krawczyk, J., Supply, P., et al., MIRU‑VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria, Nucleic Acids Res., 2010, vol. 38, pp. W326—W331. doi 10.1093/nar/gkq351CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jagielski, T., van Ingen, J., Rastogi, N., et al., Current methods in the molecular typing of Mycobacterium tuberculosis and other mycobacteria, Biomed. Res. Int., 2014, vol. 2014, p. 645802. doi 10.1155/2014/645802PubMedPubMedCentralGoogle Scholar
  5. 5.
    Schürch, A.C., Kremer, K., Warren, R.M., et al., Mutations in the regulatory network underlie the recent clonal expansion of a dominant subclone of the Mycobacterium tuberculosis Beijing genotype, Infect. Genet. Evol., 2011, vol. 11, no. 3, pp. 587—597. doi 10.1016/j.meegid.2011.01.009CrossRefPubMedGoogle Scholar
  6. 6.
    Homolka, S., Projahn, M., Feuerriegel, S., et al., High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms, PLoS One, 2012, vol. 7, no. 7. E39855. doi 10.1371/journal.pone.0039855\ rPONE-D-12-02200CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zaychikova, M.V., Zakharevich, N.V., Sagaidak, M.O., et al., Mycobacterium tuberculosis type II toxin—antitoxin systems: genetic polymorphisms and functional properties and the possibility of their use for genotyping, PLoS One, 2015, vol. 10, no. 12. E0143682. doi 10.1371/journal.pone.0143682CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rodríguez-Castillo, J.G., Pino, C., Niño, L.F., et al., Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance, Infect. Genet. Evol., 2017, vol. 54, pp. 314—323. doi 10.1016/j.meegid.2017.07.022CrossRefPubMedGoogle Scholar
  9. 9.
    Mokrousov, I., Narvskaya, O., Vyazovaya, A., et al., Russian “successful” clone B0/W148 of Mycobacterium tuberculosis Beijing genotype: a multiplex PCR assay for rapid detection and global screening, J. Clin. Microbiol., 2012, vol. 50, no. 11, pp. 3757—3759. doi 10.1128/JCM.02001-12CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shur, K.V., Maslov, D.A., Bekker, O.B., et al., MIRU-VNTR genotyping of Mycobacterium tuberculosis clinical isolates from Moscow region, Bull. Russ. State Med. Univ., 2017, vol. 6, no. 1.Google Scholar
  11. 11.
    Shah, N.S., Auld, S.C., Brust, J.C.M., et al., Transmission of extensively drug-resistant tuberculosis in South Africa, N. Engl. J. Med., 2017, vol. 376, no. 3, pp. 243—253. doi 10.1056/NEJMoa1604544CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boritsch, E.C., Khanna, V., Pawlik, A., et al., Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 35, pp. 9876—9881. doi 10.1073/pnas.1604921113CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Koch, A., Mizrahi, V., and Warner, D.F., The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?, Emerg. Microbes Infect., 2014, vol. 3, no. 3. E17. doi 10.1038/emi.2014.17CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brossier, F., Boudinet, M., Jarlier, V., et al., Comparative study of enzymatic activities of new KatG mutants from low- and high-level isoniazid-resistant clinical isolates of Mycobacterium tuberculosis, Tuberculosis, 2016, vol. 100, pp. 15—24. doi 10.1016/j.tube.2016.06.002CrossRefPubMedGoogle Scholar
  15. 15.
    Takiff, H.E., Salazar, L., Guerrero, C., et al., Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations, Antimicrob. Agents Chemother., 1994, vol. 38, no. 4, pp. 773—780.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pestova, E., Millichap, J.J., Noskin, G.A., et al., Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones, Antimicrob. Agents Chemother., 2000, vol. 45, no. 5, pp. 583—590.CrossRefGoogle Scholar
  17. 17.
    Sreevatsan, S., Pan, X., Stockbauer, K.E., et al., Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities, Antimicrob. Agents Chemother., 1996, vol. 40, no. 4, pp. 1024—1026.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Scorpio, A. and Zhang, Y., Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus, Nat. Med., 1996, vol. 2, no. 6, pp. 662—667.CrossRefPubMedGoogle Scholar
  19. 19.
    Hirano, K., Takahashi, M., Kazumi, Y., et al., Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis, Tuberc. Lung Dis., 1997, vol. 78, no. 2, pp. 117—122.CrossRefGoogle Scholar
  20. 20.
    Parida, S.K., Axelsson-Robertson, R., Rao, M.V., et al., Totally drug-resistant tuberculosis and adjunct therapies, J. Int. Med., 2015, vol. 277, no. 4, pp. 388—405. doi 10.1111/joim.12264CrossRefGoogle Scholar
  21. 21.
    Nguyen, L., Antibiotic resistance mechanisms in M. tuberculosis: an update, Arch. Toxicol., 2016, vol. 90, no. 7, pp. 1585—1604. doi 10.1007/s00204-016-1727-6CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Madsen, C.T., Jakobsen, L., Buriánková, K., et al., Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis, J. Biol. Chem., 2005, vol. 280, no. 47, pp. 38942—38947. doi 10.1074/jbc.M505727200CrossRefPubMedGoogle Scholar
  23. 23.
    Burian J., Yim G., Hsing M. et al. The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV), Nucleic Acids Res., 2013, vol. 41, no. 22, pp. 10062—10076. doi 10.1093/nar/gkt751CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Buriánková, K., Doucet-Populaire, F., Dorson, O., et al., Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex, Antimicrob. Agents Chemother., 2004, vol. 48, no. 1, pp. 143—150.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Johansen, S.K., Maus, C.E., Plikaytis, B.B., et al., Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2'-O-methylations in 16S and 23S rRNAs, Mol. Cell, 2006, vol. 23, no. 2, pp. 173—182. doi 10.1016/j.molcel.2006.05.044CrossRefPubMedGoogle Scholar
  26. 26.
    Jarlier, V., Gutmann, L., and Nikaido, H., Interplay of cell wall barrier and beta-lactamase activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae, Antimicrob. Agents Chemother., 1991, vol. 35, no. 9, p. 1937.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Georghiou, S.B., Magana, M., Garfein, R.S., et al., Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review, PLoS One, 2012, vol. 7, no. 3. doi 10.1371/journal.pone.0033275Google Scholar
  28. 28.
    Chen, W., Biswas, T., Porter, V.R., et al., Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 24, p. 9804. doi 10.1073/pnas.1105379108CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ferber, D., BIOCHEMISTRY: protein that mimics DNA helps tuberculosis bacteria resist antibiotics, Science, 2005, vol. 308, no. 5727, p. 1393A. doi 10.1126/science.308.5727.1393aCrossRefGoogle Scholar
  30. 30.
    Tao, J., Han, J., Wu, H., et al., Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance, Nucleic Acids Res., 2013, vol. 41, no. 4, pp. 2370—2381. doi 10.1093/nar/gks1351CrossRefPubMedGoogle Scholar
  31. 31.
    Page, R. and Peti, W., Toxin—antitoxin systems in bacterial growth arrest and persistence, Nat. Chem. Biol., 2016, vol. 12, no. 4, pp. 208—214. doi 10.1038/nchembio.2044CrossRefPubMedGoogle Scholar
  32. 32.
    Viveiros, M., Martins, M., Rodrigues, L., et al., Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs, Expert Rev. Anti-Infect. Ther., 2012, vol. 10, no. 9, pp. 983—998. doi 10.1586/eri.12.89CrossRefPubMedGoogle Scholar
  33. 33.
    Colangeli, R., Helb, D., Vilchèze, C., et al., Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis, PLoS Pathog., 2007, vol. 3, no. 6. E87. doi 10.1371/journal.ppat.0030087CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shur, K.V., Maslov, D.A., Mikheecheva, N.E., et al., The intrinsic antibiotic resistance to β-lactams, macrolides, and fluoroquinolones of mycobacteria is mediated by the whiB7 and tap genes, Russ. J. Genet., 2017, vol. 53, no. 9, pp. 1006—1015. doi 10.1134/S1022795417080087CrossRefGoogle Scholar
  35. 35.
    Nishino, K. and Yamaguchi, A., Analysis of a complete library of putative drug transporter genes in Escherichia coli, J. Bacteriol., 2001, vol. 183, no. 20, pp. 5803—5812. doi 10.1128/JB.183.20.5803-5812.2001CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hoffmann, C., Leis, A., Niederweis, M., et al., Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 10, pp. 3963—3967. doi 10.1073/pnas.0709530105CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Brennan, P.J. and Nikaido, H., The envelope of mycobacteria, Annu. Rev. Biochem., 1995, vol. 64, pp. 29—63. doi 10.1146/annurev.bi.64.070195.000333CrossRefPubMedGoogle Scholar
  38. 38.
    Liu, J., Rosenberg, E.Y., and Nikaido, H., Fluidity of the lipid domain of cell wall from Mycobacterium chelonae, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, no. 24, pp. 11254—11258.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu, J. and Nikaido, H., A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 7, pp. 4011—4016.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gao, L.-Y., Laval, F., Lawson, E.H., et al., Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy, Mol. Microbiol., 2003, vol. 49, no. 6, pp. 1547—1563.CrossRefPubMedGoogle Scholar
  41. 41.
    Singh, A., Jain, S., Gupta, S., et al., mymA operon of Mycobacterium tuberculosis: its regulation and importance in the cell envelope, FEMS Microbiol. Lett., 2003, vol. 227, no. 1, pp. 53—63.CrossRefPubMedGoogle Scholar
  42. 42.
    Singh, A., Jain, S., Gupta, S., et al., Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs, J. Bacteriol., 2005, vol. 187, no. 12, pp. 4173—4186. doi 10.1128/JB.187.12.4173-4186.2005CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kohanski, M.A., Dwyer, D.J., Hayete, B., et al., A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 2007, vol. 130, no. 5, pp. 797—810. doi 10.1016/j.cell.2007.06.049Google Scholar
  44. 44.
    Sherman, D.R., Mdluli, K., Hickey, M.J., et al., Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis, Science, 1996, vol. 272, no. 5268, pp. 1641—1643.Google Scholar
  45. 45.
    Zhang, Y., Heym, B., Allen, B., et al., The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis, Nature, 1992, vol. 358, no. 6387, pp. 591—593. doi 10.1038/358591a0CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang, Y., Dhandayuthapani, S., and Deretic, V., Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 23, pp. 13212—13216.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Michele, T.M., Ko, C., and Bishai, W.R., Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: implications for chemotherapy against mycobacterial persistors, Antimicrob. Agents Chemother., 1999, vol. 43, no. 2, pp. 218—225.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Buchmeier, N.A., Newton, G.L., Koledin, T., et al., Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics, Mol. Microbiol., 2003, vol. 47, no. 6, pp. 1723—1732.CrossRefPubMedGoogle Scholar
  49. 49.
    Vilchèze, C., Av-Gay, Y., Attarian, R., et al., Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis, Mol. Microbiol., 2008, vol. 69, no. 5, pp. 1316—1329. doi 10.1111/j.1365-2958.2008.06365.xCrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bartek, I.L., Woolhiser, L.K., Baughn, A.D., et al., Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence, MBio., 2014, vol. 5, no. 3. E01106-14. doi 10.1128/mBio.01106-14CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bowman, J. and Ghosh, P., A complex regulatory network controlling intrinsic multidrug resistance in Mycobacterium smegmatis, Mol. Microbiol., 2014, vol. 91, no. 1, pp. 121—134. doi 10.1111/mmi.12448CrossRefPubMedGoogle Scholar
  52. 52.
    Wieczorek, A.E., Troudt, J.L., Knabenbauer, P., et al., HspX vaccination and role in virulence in the guinea pig model of tuberculosis, Pathog. Dis., 2014, vol. 71, no. 3, pp. 315—325. doi 10.1111/2049-632X.12147CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Subbian, S., Pandey, R., Soteropoulos, P., et al., Vaccination with an attenuated ferritin mutant protects mice against virulent Mycobacterium tuberculosis, J. Immunol. Res., 2015, vol. 2015. doi 10.1155/2015/385402Google Scholar
  54. 54.
    Parasa, V.R., Rahman, M.J., Ngyuen Hoang, A.T., et al., Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue, Dis. Model. Mech., 2014, vol. 7, no. 2, pp. 281—288. doi 10.1242/dmm.013854CrossRefPubMedGoogle Scholar
  55. 55.
    Forrellad, M.A., Klepp, L.I., Gioffré, A., et al., Virulence factors of the Mycobacterium tuberculosis complex, Virulence, 2013, vol. 4, no. 1, pp. 3—66. doi 10.4161/viru.22329CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Prozorov, A.A., Fedorova, I.A., Bekker, O.B., et al., The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 775—797. doi 10.1134/S1022795414080055CrossRefGoogle Scholar
  57. 57.
    Gilmore, S.A., Schelle, M.W., Holsclaw, C.M., et al., Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages, ACS Chem. Biol., 2012, vol. 7, no. 5, pp. 863—870. doi 10.1021/cb200311sCrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jankute, M., Cox, J.A.G., Harrison, J., et al., Assembly of the mycobacterial cell wall, Annu. Rev. Microbiol., 2015, vol. 69, no. 1, pp. 405—423. doi 10.1146/annurev-micro-091014-104121CrossRefPubMedGoogle Scholar
  59. 59.
    Solans, L., Uranga, S., Aguilo, N., et al., Hyper-attenuated MTBVAC erp mutant protects against tuberculosis in mice, Vaccine, 2014, vol. 32, no. 40, pp. 5192—5197. doi 10.1016/j.vaccine.2014.07.047CrossRefPubMedGoogle Scholar
  60. 60.
    Maulén, N.P., Virulence factors of Mycobacterium tuberculosis, Rev. Med. Chil., 2011, vol. 139, no. 12, pp. 1605—1610. doi /S0034-98872011001200012Google Scholar
  61. 61.
    Perkowski, E.F., Miller, B.K., Mccann, J.R., et al., An orphaned Mce-associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters, Mol. Microbiol., 2016, vol. 100, no. 1, pp. 90—107. doi 10.1111/mmi.13303CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Song, H., Huff, J., Janik, K., et al., Expression of the ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium tuberculosis to acidic environments, Mol. Microbiol., 2011, vol. 80, no. 4, pp. 900—918. doi 10.1111/j.1365-2958.2011.07619.xCrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sohn, H., Kim, J.S., Shin, S.J., et al., Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages, PLoS Pathog., 2011, vol. 7, no. 12. doi 10.1371/journal.ppat.1002435Google Scholar
  64. 64.
    Solans, L., Aguiló, N., Samper, S., et al., A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component, Infect. Immun., 2014, vol. 82, no. 8, pp. 3446—3456. doi 10.1128/IAI.01824-14CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Parasa, V.R., Rahman, M.J., Ngyuen Hoang, A.T., et al., Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue, Dis. Model. Mech., 2014, vol. 7, no. 2, pp. 281—288. doi 10.1242/dmm.013854CrossRefPubMedGoogle Scholar
  66. 66.
    Burian, J., Ramón-García, S., Sweet, G., et al., The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance, J. Biol. Chem., 2012, vol. 287, no. 1, pp. 299—310. doi 10.1074/jbc.M111.302588CrossRefPubMedGoogle Scholar
  67. 67.
    Raghavan, S., Manzanillo, P., Chan, K., et al., Secreted transcription factor controls Mycobacterium tuberculosis virulence, Nature, 2008, vol. 454, no. 7205, pp. 717—721. doi 10.1038/nature07219CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sun, J., Singh, V., Lau, A., et al., Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity, PLoS Pathog., 2013, vol. 9, no. 7. doi 10.1371/journal.ppat.1003499Google Scholar
  69. 69.
    Gengenbacher, M., Nieuwenhuizen, N., Vogelzang, A., et al., Deletion of nuoG from the vaccine candidate Mycobacterium bovis BCG Delta ureC::hly improves protection against tuberculosis, MBio., 2016, vol. 7, no. 3. doi 10.1128/mBio.00679-16Google Scholar
  70. 70.
    Nieto, L.M.R., Mehaffy, C., Creissen, E., et al., Virulence of Mycobacterium tuberculosis after acquisition of isoniazid resistance: individual nature of katG mutants and the possible role of AhpC, PLoS One, 2016, vol. 11, no. 11. doi 10.1371/journal.pone.0166807Google Scholar
  71. 71.
    Kumar, D. and Narayanan, S., PknE, a serine/threonine kinase of Mycobacterium tuberculosis modulates multiple apoptotic paradigms, Infect. Genet. Evol., 2012, vol. 12, no. 4, pp. 737—747. doi 10.1016/j.meegid.2011.09.008CrossRefPubMedGoogle Scholar
  72. 72.
    Be, N.A., Bishai, W.R., and Jain, S.K., Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis, BMC Microbiol., 2012, vol. 12, no. 1, p. 7. doi 10.1186/1471-2180-12-7CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kumar, D., Palaniyandi, K., Challu, V.K., et al., PknE, a serine/threonine protein kinase from Mycobacterium tuberculosis has a role in adaptive responses, Arch. Microbiol., 2013, vol. 195, no. 1, pp. 75—80. doi 10.1007/s00203-012-0848-4CrossRefPubMedGoogle Scholar
  74. 74.
    Rieck, B., Degiacomi, G., Zimmermann, M., et al., PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis, PLoS Pathog., 2017, vol. 13, no. 5. doi 10.1371/journal.ppat.1006399Google Scholar
  75. 75.
    Frees, D., Brøndsted, L., and Ingmer, H., Bacterial proteases and virulence,in Regulated Proteolysis in Microorganisms, Dodrecht: Springer-Verlag, 2013, pp. 195—222. doi 10.1007/978-94-007-5940-4Google Scholar
  76. 76.
    Arguello, J.M., Gonzalez-Guerrero, M., and Raimunda, D., Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence, Biochemistry, 2011, vol. 50, no. 46, pp. 9940—9949. doi 10.1021/bi201418kCrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Getahun, H., Matteelli, A., Chaisson, R.E., et al., Latent Mycobacterium tuberculosis infection, N. Engl. J. Med., 2015, vol. 372, no. 22, pp. 2127—2135. doi 10.1056/NEJMra1405427CrossRefPubMedGoogle Scholar
  78. 78.
    Chawla, M., Parikh, P., Saxena, A., et al., Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo, Mol. Microbiol., 2012, vol. 85, no. 6, pp. 1148—1165. doi 10.1111/j.1365-2958.2012.08165.xCrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Betts, J.C., Lukey, P.T., Robb, L.C., et al., Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling, Mol. Microbiol., 2002, vol. 43, no. 3, pp. 717—731. doi 10.1046/j.1365-2958.2002.02779.xCrossRefPubMedGoogle Scholar
  80. 80.
    Singh, A., Guidry, L., Narasimhulu, K.V., et al., Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 28, pp. 11562—11567. doi 10.1073/pnas.0700490104CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mehta, M., Rajmani, R.S., and Singh, A., Mycobacterium tuberculosis WhiB3 responds to vacuolar pH-induced changes in mycothiol redox potential to modulate phagosomal maturation and virulence, J. Biol. Chem., 2016, vol. 291, no. 6, pp. 2888—2903. doi 10.1074/jbc.M115.684597CrossRefPubMedGoogle Scholar
  82. 82.
    Lee, W., VanderVen, B.C., Fahey, R.J., et al., Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress, J. Biol. Chem., 2013, vol. 288, no. 10, pp. 6788—6800. doi 10.1074/jbc.M112.445056CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bretl, D.J., Demetriadou, C., and Zahrt, T.C., Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis, Microbiol. Mol. Biol. Rev., 2011, vol. 75, no. 4, pp. 566—582. doi 10.1128/MMBR.05004-11CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Cho, H.Y., Lee, Y.H., Bae, Y.S., et al., Activation of ATP binding for the autophosphorylation of DosS, a Mycobacterium tuberculosis histidine kinase lacking an ATP lid motif, J. Biol. Chem., 2013, vol. 288, no. 18, pp. 12437—12447. doi 10.1074/jbc.M112.442467CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Schreuder, L.J., Carroll, P., Muwanguzi-Karugaba, J., et al., Mycobacterium tuberculosis H37Rv has a single nucleotide polymorphism in PhoR which affects cell wall hydrophobicity and gene expression, Microbiology, 2015, vol. 161, pp. 765—773. doi 10.1099/mic.0.000036CrossRefPubMedGoogle Scholar
  86. 86.
    Converse, P.J., Karakousis, P.C., Klinkenberg, L.G., et al., Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models, Infect. Immun., 2009, vol. 77, no. 3, pp. 1230—1237. doi 10.1128/IAI.01117-08CrossRefPubMedGoogle Scholar
  87. 87.
    Mehra, S., Foreman, T.W., Didier, P.J., et al., The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence, Am. J. Respir. Crit. Care Med., 2015, vol. 191, no. 10, pp. 1185—1196. doi 10.1164/rccm.201408-1502OCCrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bretl, D.J., He, H., Demetriadou, C., et al., MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c, Infect. Immun., 2012, vol. 80, no. 9, pp. 3018—3033. doi 10.1128/IAI.00520-12CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Bretl, D.J., Bigley, T.M., Terhune, S.S., et al., The MprB extracytoplasmic domain negatively regulates activation of the Mycobacterium tuberculosis MprAB two-component system, J. Bacteriol., 2014, vol. 196, no. 2, pp. 391—406. doi 10.1128/JB.01064-13CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Hu, Y., Morichaud, Z., Chen, S., et al., Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σ a-containing RNA polymerase holoenzyme, Nucleic Acids Res., 2012, vol. 40, no. 14, pp. 6547—6557. doi 10.1093/nar/gks346CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Sachdeva, P., Misra, R., Tyagi, A.K., et al., The sigma factors of Mycobacterium tuberculosis: regulation of the regulators, FEBS J., 2010, vol. 277, pp. 605—626. doi 10.1111/j.1742-4658.2009.07479.xCrossRefPubMedGoogle Scholar
  92. 92.
    Evangelopoulos, D., Gupta, A., Lack, N.A., et al., Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis, Tuberculosis, 2014, vol. 94, no. 6, pp. 664—671. doi 10.1016/j.tube.2014.08.007CrossRefPubMedGoogle Scholar
  93. 93.
    Yang, M., Gao, C., Cui, T., et al., A TetR-like regulator broadly affects the expressions of diverse genes in Mycobacterium smegmatis, Nucleic Acids Res., 2012, vol. 40, no. 3, pp. 1009—1020. doi 10.1093/nar/gkr830CrossRefPubMedGoogle Scholar
  94. 94.
    Zhang, H., Gao, L., Zhang, J., et al., A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis, PLoS One, 2014, vol. 9, no. 8. E106016. doi 10.1371/journal.pone.0106016CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ramón-García, S., Ng, C., Jensen, P.R., et al., WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria, J. Biol. Chem., 2013, vol. 288, no. 48, pp. 34514—34528. doi 10.1074/jbc.M113.516385CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Casali, N., White, A.M., and Riley, L.W., Regulation of the Mycobacterium tuberculosis mce1 operon, J. Bacteriol., 2006, vol. 188, no. 2, pp. 441—449. doi 10.1128/JB.188.2.441-449.2006CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Fang, H., Yu, D., Hong, Y., et al., The LuxR family regulator Rv0195 modulates Mycobacterium tuberculosis dormancy and virulence, Tuberculosis, 2013, vol. 93, no. 4, pp. 425—431. doi 10.1016/j.tube. 2013.04.005CrossRefPubMedGoogle Scholar
  98. 98.
    Deng, W., Li, C., and Xie, J., The underling mechanism of bacterial TetR/AcrR family transcriptional repressors, Cell. Signalling, 2013, vol. 25, pp. 1608—1613. doi 10.1016/j.cellsig.2013.04.003CrossRefPubMedGoogle Scholar
  99. 99.
    Gao, C., Yang, M., and He, Z.-G., Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis, PLoS One, 2012, vol. 7, no. 4. E36255. doi 10.1371/journal.pone.0036255CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Li, Y. and He, Z.G., The mycobacterial lysr-type regulator oxys responds to oxidative stress and negatively regulates expression of the catalase-peroxidase gene, PLoS One, 2012, vol. 7, no. 1. doi 10.1371/journal.pone.0030186Google Scholar
  101. 101.
    Deng, W., Wang, H., and Xie, J., Regulatory and pathogenesis roles of Mycobacterium Lrp/AsnC family transcriptional factors, J. Cell. Biochem., 2011, vol. 112, no. 10, pp. 2655—2662. doi 10.1002/jcb.23193CrossRefPubMedGoogle Scholar
  102. 102.
    Akhter, Y., Tundup, S., and Hasnain, S.E., Novel biochemical properties of a CRP/FNR family transcription factor from Mycobacterium tuberculosis, Int. J. Med. Microbiol., 2007, vol. 297, no. 6, pp. 451—457. doi 10.1016/j.ijmm.2007.04.009CrossRefPubMedGoogle Scholar
  103. 103.
    Yamaguchi, Y., Park, J.-H., and Inouye, M., Toxin—antitoxin systems in bacteria and archaea, Annu. Rev. Genet., 2011, vol. 45, no. 1, pp. 61—79. doi 10.1146/annurev-genet-110410-132412CrossRefPubMedGoogle Scholar
  104. 104.
    Maisonneuve, E., Shakespeare, L.J., Jørgensen, M.G., et al., Bacterial persistence by RNA endonucleases, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 32, pp. 13206—13211. doi 10.1073/pnas.1100186108CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang, Y., Wang, H., Hay, A.J., et al., Functional RelBE-family toxin—antitoxin pairs affect biofilm maturation and intestine colonization in Vibrio cholerae, PLoS One, 2015, vol. 10, no. 8. doi 10.1371/journal.pone.0135696Google Scholar
  106. 106.
    Leung, V. and Lévesque, C.M., A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance, J. Bacteriol., 2012, vol. 194, no. 9, pp. 2265—2274. doi 10.1128/JB.06707-11CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    De la Cruz, M.A., Zhao, W., Farenc, C., et al., A toxin—antitoxin module of Salmonella promotes virulence in mice, PLoS Pathog., 2013, vol. 9, no. 12, pp. 1—13. doi 10.1371/journal.ppat.1003827CrossRefGoogle Scholar
  108. 108.
    Yamaguchi, Y. and Inouye, M., Regulation of growth and death in Escherichia coli by toxin—antitoxin systems, Nat. Rev. Microbiol., 2011, vol. 9, pp. 779—790. doi 10.1038/nrmicro2651CrossRefPubMedGoogle Scholar
  109. 109.
    Mutschler, H., Gebhardt, M., Shoeman, R.L., et al., A novel mechanism of programmed cell death in bacteria by toxin—antitoxin systems corrupts peptidoglycan synthesis, PLoS Biol., 2011, vol. 9, no. 3. doi 10.1371/journal.pbio.1001033Google Scholar
  110. 110.
    Bajaj, R.A., Arbing, M.A., Shin, A., et al., Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response, Acta Crystallogr., Sect. F, Struct. Biol. Commun., 2016, vol. 72, no. 12, pp. 863—869. doi 10.1107/S2053230X16017957CrossRefGoogle Scholar
  111. 111.
    Singh, V.K., Berry, L., Bernut, A., et al., A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of Mycobacterium marinum in multiple hosts, Cell. Microbiol., 2016, vol. 18, no. 11, pp. 1489—1507. doi 10.1111/cmi.12606CrossRefPubMedGoogle Scholar
  112. 112.
    Wolff, K.A., Nguyen, H.T., Cartabuke, R.H., et al., Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria, Antimicrob. Agents Chemother., 2009, vol. 53, no. 8, pp. 3515—3519. doi 10.1128/AAC.00012-09CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Morris, R.P., Nguyen, L., Gatfield, J., et al., Ancestral antibiotic resistance in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 34, pp. 12200—12205. doi 10.1073/pnas.0.505446102CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Reeves, A.Z., Campbell, P.J., Sultana, R., et al., Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5' untranslated region of whiB7, Antimicrob. Agents Chemother., 2013, vol. 57, no. 4, pp. 1857—1865. doi 10.1128/AAC.02191-12CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Murugasu-Oei, B., Tay, A., and Dick, T., Upregulation of stress response genes and ABC transporters in anaerobic stationary-phase Mycobacterium smegmatis, Mol. Gen. Genet., 1999, vol. 262, nos. 4—5, pp. 677—682. doi 10.1007/s004380051130CrossRefPubMedGoogle Scholar
  116. 116.
    Ocampo, M., Rodriguez, D.M., Curtidor, H., et al., Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages, Amino Acids, 2012, vol. 42, no. 6, pp. 2067—2077. doi 10.1007/s00726-011-0938-7CrossRefPubMedGoogle Scholar
  117. 117.
    Yaseen, I., Kaur, P., Nandicoori, V.K., et al., Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3, Nat. Commun., 2015, vol. 6, p. 8922. doi 10.1038/ncomms9922CrossRefPubMedGoogle Scholar
  118. 118.
    Kim, K.H., An, D.R., Song, J., et al., Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 20, p. 7729. doi 10.1073/pnas.1120251109CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Cole, S.T., Inhibiting Mycobacterium tuberculosis within and without, Philos. Trans. R. Soc., B, 2016, vol. 371, no. 1707, p. 20150506. doi 10.1098/rstb.2015.0506Google Scholar
  120. 120.
    Kassa, D., Ran, L., Geberemeskel, W., et al., Analysis of immune responses against a wide range of Mycobacterium tuberculosis antigens in patients with active pulmonary tuberculosis, Clin. Vaccine Immunol., 2012, vol. 19, no. 12, pp. 1907—1915. doi 10.1128/CVI.00482-12CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Eilertson, B., Maruri, F., Blackman, A., et al., A novel resistance mutation in eccC5 of the ESX-5 secretion system confers ofloxacin resistance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2016, vol. 71, no. 9, pp. 2419—2427. doi 10.1093/jac/dkw168CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. V. Shur
    • 1
  • O. B. Bekker
    • 1
  • M. V. Zaichikova
    • 1
  • D. A. Maslov
    • 1
  • N. I. Akimova
    • 1
  • N. V. Zakharevich
    • 1
  • M. S. Chekalina
    • 1
  • V. N. Danilenko
    • 1
  1. 1.Vavilov Institute of General Genetics Russian Academy of SciencesMoscowRussia

Personalised recommendations