Advertisement

Russian Journal of Genetics

, Volume 54, Issue 12, pp 1452–1465 | Cite as

The Phylogeography and Demographic History of the Common Shrew Sorex araneus L., 1758 (Eulipotyphla, Mammalia)

  • A. A. RaspopovaEmail author
  • A. A. Bannikova
  • V. S. Lebedev
ANIMAL GENETICS
  • 29 Downloads

Abstract

The phylogeographic structure of Sorex araneus was assessed on the basis of the sequences of mitochondrial cytb gene sampled across the most of the species range. Two major haplogroups were revealed: a European group, which is distributed westwards from Western Siberia, and a Siberian group, which prevails in the eastern part of the range. The Siberian haplotypes are also present in southern Fennoscandia, but are absent in the northeast of Europe and in the Northern Urals. The demographic analysis indicates a rapid species-wide expansion from a single western source at the Pleistocene/Holocene boundary and a later expansion in the Siberian part of the range.

Keywords:

historical demography phylogeography Sorex araneus Pleistocene chromosomal races 

REFERENCES

  1. 1.
    Polly, P.D., On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones,in Microevolution Rate, Pattern, Process, Springer-Verlag, 2001, pp. 339—357. doi 10.1007/978-94-010-0585-2_21Google Scholar
  2. 2.
    Orlov, V.N. and Kozlovskii, A.I., The role of glacial epochs in the formation of chromosomal polymorphism in the common shrew Sorex araneus L. (Insectivora, Mammalia), Dokl. Akad. Nauk, 2002, vol. 386, pp. 462–465. doi 10.1023/A:1020782805637Google Scholar
  3. 3.
    Grigoryeva, O.O., Molecular-genetic characteristics of intraspecific forms of the common shrew Sorex araneus (Mammalia), Extended Abstract of Cand. Sci. Dissertation, Inst. Problem Ekol. Evol., Moscow, 2012.Google Scholar
  4. 4.
    Grigor’eva, O.O., Borisov, Yu.M., Stakheev, V.V., et al., Genetic structure of the common shrew Sorex araneus, Russ. J. Genet., 2015, vol. 51, no. 6, pp. 607—618. doi 10.7868/S0016675815030042CrossRefGoogle Scholar
  5. 5.
    Searle, J.B., Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny, Syst. Biol., 1984, vol. 33, no. 2, pp. 184—194. doi 10.1093/sysbio/33.2.184CrossRefGoogle Scholar
  6. 6.
    Polyakov, A.V., Panov, V.V., Ladygina, T.Yu., et al., Chromosomal evolution of the common shrew Sorex araneus L. from the Southern Urals and Siberia in the Postglacial Period, Russ. J. Genet., 2001, vol. 37, no. 4, pp. 351—357. doi 10.1023/A:1016690023394CrossRefGoogle Scholar
  7. 7.
    Ratkiewicz, M., Fedyk, S., Banaszek, A., et al., The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland, Heredity, 2002, vol. 88, pp. 235—242. doi 10.1038/sj.hdy.6800032CrossRefGoogle Scholar
  8. 8.
    Wójcik, J.M., Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution, Acta Theriol., 1993, vol. 38, no. 3, pp. 315—338.CrossRefGoogle Scholar
  9. 9.
    Taberlet, P., Fumagalli, L., and Hausser, J., Chromosomal versus mitochondrial DNA evolution: tracking the evolutionary history of the Southwestern European populations of the Sorex araneus group (Mammalia, Insectivora), Evolution, 1994, vol. 48, pp. 623—636. doi 10.1111/j.1558-5646.1994.tb01349.xCrossRefGoogle Scholar
  10. 10.
    Andersson, A.C., Alström-Rapaport, C., and Fredga, K., Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden: implications for interpreting chromosomal evolution and colonization history, Mol. Ecol., 2005, vol. 14, no. 9, pp. 2703—2716. doi 10.1111/j.1365-294X.2005.02584.xCrossRefGoogle Scholar
  11. 11.
    Bannikova, A.A., Bulatova, N.S., Lebedev, V.S., and Kramerov, D.A., Mitochondrial and nuclear DNA variability of the East European and Siberian chromosome races of the common shrew Sorex araneus, Evolution in the Sorex araneus Group: Cytogenetic and Molecular Aspects (Proc. 7th Meet. Int. Sorex araneus Cytogenet. Comm. (ISACC)), St. Petersburg, 2005, pp. 14—15.Google Scholar
  12. 12.
    Ho, S.Y.W., Phillips, M.J., Cooper, A., and Drummond, A., Time dependency of molecular rate estimates and systematic overestimation of recent divergence times, Mol. Biol. Evol., 2005, vol. 22, no. 7, pp. 1561—1568. doi 10.1093/molbev/msi145CrossRefGoogle Scholar
  13. 13.
    Ho, S.Y.W., Calibrating molecular estimates of substitution rates and divergence times in birds, J. Avian Biol., 2007, vol. 38, no. 4, pp. 409—414. doi 10.1111/j.0908-8857.2007.04168.xCrossRefGoogle Scholar
  14. 14.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.Google Scholar
  15. 15.
    Bannikova, A.A. and Lebedev, V.S., Genetic heterogeneity of the Caucasian shrew (Mammalia, Lipotyphla, Soricidae) inferred from the mtDNA markers as a potential consequence of ancient hybridization, Mol. Biol. (Moscow), 2010, vol. 44, pp. 658—662.CrossRefGoogle Scholar
  16. 16.
    Schneider, S. and Excoffier, L., Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA, Genetics, 1999, vol. 152, no. 3, pp. 1079—1089.Google Scholar
  17. 17.
    Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, no. 3, pp. 585—595.Google Scholar
  18. 18.
    Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, no. 2, pp. 915—925.Google Scholar
  19. 19.
    Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50. doi 10.1177/117693430500100003CrossRefGoogle Scholar
  20. 20.
    Gower, J.C., Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika, 1966, vol. 53, nos. 3—4, pp. 325—338. doi 10.1093/biomet/53.3-4.325CrossRefGoogle Scholar
  21. 21.
    Mardia, K.V., Some properties of classical multi-dimensional scaling, Commun. Stat.—Theory Methods, 1978, vol. 7, no. 13, pp. 1233—1241. doi 10.1080/03610927808827707CrossRefGoogle Scholar
  22. 22.
    Dupanloup, I., Schneider, S., and Excoffier, L., A simulated annealing approach to define the genetic structure of populations, Mol. Ecol., 2002, vol. 11, no. 12, pp. 2571—2581. doi 10.1046/j.1365-294X.2002.01650.xCrossRefGoogle Scholar
  23. 23.
    Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48. doi 10.1093/oxfordjournals.molbev.a026036CrossRefGoogle Scholar
  24. 24.
    Fluxus Technology Ltd., Free phylogenetic network software, 2010. http://www.fluxus-engineering.com/sharenet.htm.Google Scholar
  25. 25.
    Fluxus Technology Ltd., Network 4.6.0.0: user guide, 2010. http://www.fluxus-engineering.com/sharenet.htm.Google Scholar
  26. 26.
    QGIS Development Team (YEAR), QGIS Geographic Information System: Open Source Geospatial Foundation Project. http://qgis.osgeo.org.Google Scholar
  27. 27.
    Mitas, L. and Mitasova, H., Spatial interpolation, in Geographical Information Systems: Principles, Techniques, Management and Applications, Longley, P. et al., Eds., 1999, vol. 1, pp. 481—492.Google Scholar
  28. 28.
    Miller, M.P., Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information, J. Hered., 2005, vol. 96, no. 6, pp. 722—724. doi 10.1093/jhered/esi119CrossRefGoogle Scholar
  29. 29.
    Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, no. 2, part 1, pp. 209—220.Google Scholar
  30. 30.
    Drummond, A.J., Rambaut, A., Shapiro, B., and Pybus, O.G., Bayesian coalescent inference of past population dynamics from molecular sequences, Mol. Biol. Evol., 2005, vol. 22, no. 5, pp. 1185—1192. doi 10.1093/molbev/msi103CrossRefGoogle Scholar
  31. 31.
    Drummond, A.J., Suchard, M.A., Xie, D., and Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 2012, vol. 29, no. 8, pp. 1969—1973. doi 10.1093/molbev/mss075CrossRefGoogle Scholar
  32. 32.
    Jobb, G., TREEFINDER version of March 2011, Munich, 2011. Distributed by the author at http://www.treefinder.de.Google Scholar
  33. 33.
    Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1586—1591. doi 10.1093/molbev/msm088CrossRefGoogle Scholar
  34. 34.
    Felsenstein, J., Evolutionary trees from DNA sequences: a maximum likelihood approach, J. Mol. Evol., 1981, vol. 17, no. 6, pp. 368—376. doi 10.1007/BF01734359CrossRefGoogle Scholar
  35. 35.
    Rambaut, A., Suchard, M., and Drummond, A., MCMC trace analysis tool: Tracer v. 1.6. 0, 2014. http://tree.bio.ed.ac.uk/software/tracer/.Google Scholar
  36. 36.
    Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., and Cosson, J.F., Comparative phylogeography and postglacial colonization routes in Europe, Mol. Ecol., 1998, vol. 7, no. 4, pp. 453—464. doi 10.1046/j.1365-294x.1998.00289.xCrossRefGoogle Scholar
  37. 37.
    Brünner, H., Lugon-Moulin, N., Balloux, F., et al., A taxonomical re-evaluation of the Valais chromosome race of the common shrew Sorex araneus (Insectivora: Soricidae), Acta Theriol., 2002, vol. 47, no. 3, pp. 245—275. doi 10.1007/BF03194146CrossRefGoogle Scholar
  38. 38.
    Brünner, H., Lugon-Moulin, N., and Hausser, J., Alps, genes, and chromosomes: their role in the formation of species in the Sorex araneus group (Mammalia, Insectivora), as inferred from two hybrid zones, Cytogenet. Genome Res., 2002, vol. 96, nos. 1—4, pp. 85—96. doi 10.1159/000063039CrossRefGoogle Scholar
  39. 39.
    Hewitt, G.M., Some genetic consequences of ice ages, and their role in divergence and speciation, Biol. J. Linn. Soc., 1996, vol. 58, no. 3, pp. 247—276. doi 10.1111/j.1095-8312.1996.tb01434.xCrossRefGoogle Scholar
  40. 40.
    Yannic, G., Pellissier, L., Dubey, S., et al., Multiple refugia and barriers explain the phylogeography of the Valais shrew, Sorex antinorii (Mammalia: Soricomorpha), Biol. J. Linn. Soc., 2012, vol. 105, no. 4, pp. 864—880. doi 10.1111/j.1095-8312.2011.01824.xCrossRefGoogle Scholar
  41. 41.
    Lugon-Moulin, N. and Hausser, J., Phylogeographical structure, postglacial recolonization and barriers to gene flow in the distinctive Valais chromosome race of the common shrew (Sorex araneus), Mol. Ecol., 2002, vol. 11, no. 4, pp. 785—794. doi 10.1046/j.1365-294X.2002.01469.xCrossRefGoogle Scholar
  42. 42.
    Yannic, G., Basset, P., and Hausser, J., A new perspective on the evolutionary history of western European Sorex araneus group revealed by paternal and maternal molecular markers, Mol. Phylogenet. Evol., 2008, vol. 47, no. 1, pp. 237—250. doi 10.1016/j.ympev.2008.01.029CrossRefGoogle Scholar
  43. 43.
    Schlüchter, C., The deglaciation of the Swiss-Alps: a paleoclimatic event with chronological problems, Bull. Assoc. Fr. Etude Quat., 1988, vol. 25, no. 2, pp. 141—145. doi 10.3406/quate.1988.1875Google Scholar
  44. 44.
    Burga, C.A., Swiss vegetation history during the last 18 000 years, New Phytol., 1988, vol. 110, no. 4, pp. 581—662. doi 10.1111/j.1469-8137.1988.tb00298.xCrossRefGoogle Scholar
  45. 45.
    McDevitt, A.D., Yannic, G., Rambau, R., et al., Postglacial recolonization of continental Europe by the pygmy shrew (Sorex minutus) inferred from mitochondrial and Y chromosomal DNA sequences, in Relict Species, Berlin: Springer-Verlag, 2010, pp. 217—236. doi 10.1007/978-3-540-92160-8_12Google Scholar
  46. 46.
    Vega, R., Fløjgaard, C., Lira-Noriega, A., et al., Northern glacial refugia for the pygmy shrew Sorex minutus in Europe revealed by phylogeographic analyses and species distribution modelling, Ecography, 2010, vol. 33, no. 2, pp. 260—271. doi 10.1111/j.1600-0587.2010.06287.xGoogle Scholar
  47. 47.
    Searle, J.B., Kotlik, P., Rambau, R., et al., The Celtic fringe of Britain: insights from small mammal phylogeography, Proc. R. Soc. B, 2009, vol. 276, no. 1677, pp. 4287—4294. doi 10.1098/rspb.2009.1422Google Scholar
  48. 48.
    McDevitt, A. D., Rambau, R.V., O’Brien, J., et al., Genetic variation in Irish pygmy shrews Sorex minutus (Soricomorpha: Soricidae): implications for colonization history, Biol. J. Linn. Soc., 2009, vol. 97, no. 4, pp. 918—927. doi 10.1111/j.1095-8312.2009.01218.xCrossRefGoogle Scholar
  49. 49.
    Mascheretti, S., Rogatcheva, M. B., Gündüz, İ., et al., How did pygmy shrews colonize Ireland? Clues from a phylogenetic analysis of mitochondrial cytochrome b sequences, Proc. R. Soc. London, Ser. B, 2003, vol. 270, no. 1524, pp. 1593—1599. doi 10.1098/rspb.2003.2406CrossRefGoogle Scholar
  50. 50.
    Hope, A.G., Waltari, E., Dokuchaev, N.E., et al., High-latitude diversification within Eurasian least shrews and Alaska tiny shrews (Soricidae), J. Mammal., 2010, vol. 91, no. 5, pp. 1041—1057.CrossRefGoogle Scholar
  51. 51.
    Lozhkin, A.V., Anderson, P., Eisner, W.R., and Solomatkina, T.B., Late glacial and Holocene landscapes of central Beringia, Quat. Res., 2011, vol. 76, no. 3, pp. 383—392. doi 10.1644/09-MAMM-A-402.1CrossRefGoogle Scholar
  52. 52.
    MacDonald, G.M., Velichko, A.A. Kremenetski, C.V., et al., Holocene treeline history and climate change across northern Eurasia, Quat. Res., 2000, vol. 53, no. 3, pp. 302—311. doi 10.1006/qres.1999.2123CrossRefGoogle Scholar
  53. 53.
    Velichko, A.A., Andreev, A.A., and Klimanov, V.A., Climate and vegetation dynamics in the tundra and forest zone during the Late Glacial and Holocene, Quat. Int., 1997, vol. 41, pp. 71—96. doi 10.1016/S1040-6182(96)00039-0CrossRefGoogle Scholar
  54. 54.
    Zhang, H.X. and Zhang, M.L., Genetic structure of the Delphinium naviculare species group tracks Pleistocene climatic oscillations in the Tianshan Mountains, arid Central Asia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, vol. 353, pp. 93—103. doi 10.1016/j.palaeo. 2012.07.013CrossRefGoogle Scholar
  55. 55.
    Böhner, J. and Lehmkuhl, F., Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios, Boreas, 2005, vol. 34, no. 2, pp. 220—231. doi 10.1111/j.1502-3885.2005.tb01017.xCrossRefGoogle Scholar
  56. 56.
    Oehlert, G.W., A note on the delta method, Am. Stat., 1992, vol. 46, no. 1, pp. 27—29.Google Scholar
  57. 57.
    Hey, J. and Nielsen, R., Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis, Genetics, 2004, vol. 167, no. 2, pp. 747—760. doi 10.1534/genetics.103.024182CrossRefGoogle Scholar
  58. 58.
    Hey, J. and Nielsen, R., Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 8, pp. 2785—2790. doi 10.1073/pnas.0611164104CrossRefGoogle Scholar
  59. 59.
    Bannikova, A.A., Dokuchaev, N.E., Yudina, E.V., et al., Holarctic phylogeography of the tundra shrew (Sorex tundrensis) based on mitochondrial genes, Biol. J. Linn. Soc., 2010, vol. 101, no. 3, pp. 721—746. doi 10.1111/j.1095-8312.2010.01510.xCrossRefGoogle Scholar
  60. 60.
    Weninger, B., Schulting, R., Bradtmöller, M., et al., The catastrophic final flooding of Doggerland by the Storegga Slide tsunami, Doc. Praehist., 2008, vol. 35, p. 1.CrossRefGoogle Scholar
  61. 61.
    Searle, J.B. and Wilkinson, P.J., Karyotypic variation in the common shrew (Sorex araneus) in Britain—a “Celtic Fringe,” Heredity, 1987, vol. 59, no. 3, p. 345. doi 10.1038/hdy.1987.141CrossRefGoogle Scholar
  62. 62.
    Bilton, D.T., Mirol, P.M., Mascheretti, S., et al., Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization, R. Soc. London, Ser. B, 1998, vol. 265, no. 1402, pp. 1219—1226. doi 10.1098/rspb.1998.0423Google Scholar
  63. 63.
    Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, MA: Harvard Univ. Press, 2000.Google Scholar
  64. 64.
    Polyakov, A.V., Zima, J., Searle, J.B., et al., Chromosome races of the common shrew Sorex araneus in the Ural Mts: a link between Siberia and Scandinavia?, Acta Theriol., 2000, vol. 45, suppl. 1, pp. 19—26.CrossRefGoogle Scholar
  65. 65.
    Fadeeva, T., Insectivorous mammals (Lipotyphla, Soricidae) of the Perm Pre-Ural in the Late Pleistocene and Holocene time, Quat. Int., 2016, vol. 420, pp. 156—170. doi 10.1016/j.quaint.2015.10.074CrossRefGoogle Scholar
  66. 66.
    Lundqvist, A.C., Alström-Rapaport, C., and Tegelström, H., Fennoscandian phylogeography of the common shrew Sorex araneus: postglacial recolonization—combining information from chromosomal variation with mitochondrial DNA data, Acta Theriol., 2011, vol. 56, no. 2, pp. 103—111. doi 10.1007/s13364-010-0022-9CrossRefGoogle Scholar
  67. 67.
    Hais, M., Komprdová, K., Ermakov, N., et al., Modelling the last glacial maximum environments for a refugium of Pleistocene biota in the Russian Altai Mountains, Siberia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, vol. 438, pp. 135—145. doi 10.1016/j.palaeo.2015.07.037CrossRefGoogle Scholar
  68. 68.
    Prost, S., Klietmann, J., Kolfschoten, T., et al., Effects of Late Quaternary climate change on Palearctic shrews, Global Change Biol., 2013, vol. 19, no. 6, pp. 1865—1874. doi 10.1111/gcb.12153CrossRefGoogle Scholar
  69. 69.
    Agadjanian, A.K. and Serdyuk, N.V., The history of mammalian communities and paleogeography of Altai Mountains in the Paleolithic, Paleontol. J., 2005, vol. 39, suppl., no 6, pp. 645—821.Google Scholar
  70. 70.
    Serdyuk, N.V., Paleoreconstruction of Pleistocene environments of human habitats in the Late Pleistocene and Holocene near the Charyshskii Naves cave, Central Altai, Russia, Paleontol. J., 2006, vol. 40, no. 4, pp. S501—S507. doi 10.1134/S0031030106100108CrossRefGoogle Scholar
  71. 71.
    Serdyuk, N. and Zenin, A., Small mammals from the Strashnaya cave (Northwest Altai, West Siberia, Russia), Quat. Int., 2016, vol. 406, pp. 162—168. doi 10.1016/j.quaint.2015.10.007CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Raspopova
    • 1
    Email author
  • A. A. Bannikova
    • 1
  • V. S. Lebedev
    • 2
  1. 1.Department of Zoology, Faculty of Biology, Moscow State UniversityMoscowRussia
  2. 2.Zoological Museum of Moscow State UniversityMoscowRussia

Personalised recommendations