Russian Journal of Genetics

, Volume 54, Issue 12, pp 1410–1415 | Cite as

RNA in Human Sperm and Some Problems of Male Fertility

  • M. A. MazilinaEmail author
  • E. M. Komarova
  • V. S. BaranovEmail author


The progress of genomic technologies has led to an increased understanding of the role of spermatozoa and spermioplasm RNA complex which is associated with male fertility. In this review, information about functional role of spermatozoal RNA such as messenger RNA and different types of noncoding RNAs is discussed. Data on the relationship between specific noncoding sperm RNAs and male infertility, oocyte fertilization, and early embryo development are discussed. The potential role of sperm RNAs as a predictor of outcome of assisted reproductive technologies (ART) is highlighted. Accumulation and processing of data on a unique RNA pattern in human spermatozoa will improve the algorithm for examining infertile couples, make it possible to increase the efficiency of ART, and help to choose the best way to overcome infertility.


human sperm sperm RNA noncoding RNA microRNA male infertility assisted reproductive technologies 



  1. 1.
    Moldenhauer, J.S., Ostermeier, G.C., Johnson, A., et al., Diagnosing male factor infertility using microarrays, J. Androl., 2003, vol. 24, no. 6, pp. 783—789.CrossRefGoogle Scholar
  2. 2.
    Miller, D., Ostermeier, G.C., and Krawetz, S.A., The controversy, potential and roles of spermatozoal RNA, Trends. Mol. Med., 2005, vol. 11, no. 4, pp. 156—163. doi 10.1016/j.molmed.2005.02.006CrossRefGoogle Scholar
  3. 3.
    Cooper, T.G., Cytoplasmic droplets: the good, the bad or just confusing?, Hum. Reprod., 2005, vol. 20, no. 1, pp. 9—11. doi 10.1093/humrep/deh555CrossRefGoogle Scholar
  4. 4.
    Betlach, C.J. and Erickson, R.P., 28S and 18S ribonucleic acid from mammalian spermatozoa, J. Exp. Zool., 1976, vol. 198, no. 1, pp. 49—55. doi 10.1002/jez.1401980107CrossRefGoogle Scholar
  5. 5.
    Johnson, G.D., Lalancette, C., Linnemann, A.K., et al., The sperm nucleus: chromatin, RNA, and the nuclear matrix, Reproduction, 2011, vol. 141, no. 1, pp. 21—36. doi 10.1530/REP-10-0322CrossRefGoogle Scholar
  6. 6.
    Krawetz, S.A., Paternal contribution: new insights and future challenges, Nat. Rev. Genet., 2005, vol. 6, no. 8, pp. 633—642. doi 10.1038/nrg1654CrossRefGoogle Scholar
  7. 7.
    Pessot, C.A., Brito, M., Figueroa, J., et al., Presence of RNA in the sperm nucleus, Biochem. Biophys. Res. Commun., 1989, vol. 158, no. 1, pp. 272—278.CrossRefGoogle Scholar
  8. 8.
    Wykes, S.M., Miller, D., and Krawetz, S.A., Mammalian spermatozoal mRNAs: tools for the functional analysis of male gametes, J. Submicrosc. Cytol. Pathol., 2000, vol. 32, no. 1, pp. 77—81.Google Scholar
  9. 9.
    Kumar, G., Patel, D., and Naz, R.K., c-MYC mRNA is present in human sperm cells, Cell. Mol. Biol. Res., 1993, vol. 39, no. 2, pp. 111—117.Google Scholar
  10. 10.
    Miller, D., Tang, P.Z., Skinner, C., and Lilford, R., Differential RNA fingerprinting as a tool in the analysis of spermatozoal gene expression, Hum. Reprod., 1994, vol. 9, no. 5, pp. 864—869.CrossRefGoogle Scholar
  11. 11.
    Wykes, S.M., Visscher, D.W., and Krawetz, S.A., Haploid transcripts persist in mature human spermatozoa, Mol. Hum. Reprod., 1997, vol. 3, no. 1, pp. 15—19.CrossRefGoogle Scholar
  12. 12.
    Miller, D., Briggs, D., and Snowden, H., A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis, Gene, 1999, vol. 237, no. 2, pp. 385—392.CrossRefGoogle Scholar
  13. 13.
    Lambard, S., Galeraud-Denis, I., Martin, G., et al., Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation, Mol. Hum. Reprod., 2004, vol. 10, no. 7, pp. 535—541. doi 10.1093/molehr/gah064CrossRefGoogle Scholar
  14. 14.
    Wang, H., Zhou, Z., and Xu, M., A spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications, J. Mol. Med., 2004, vol. 82, no. 5, pp. 317—324. doi 10.1007/s00109-004-0526-3CrossRefGoogle Scholar
  15. 15.
    Ostermeier, G.C., Dix, D.J., Miller, D., et al., Spermatozoal RNA profiles of normal fertile men, Lancet (London), 2002, vol. 360, no. 9335, pp. 772—777. doi 10.1016/S0140-6736(02)09899-9CrossRefGoogle Scholar
  16. 16.
    Dadoune, J.P., Spermatozoal RNAs: what about their functions?, Microsc. Res. Tech., 2009, vol. 72, no. 8, pp. 536—551. doi 10.1002/jemt.20697CrossRefGoogle Scholar
  17. 17.
    Fischer, B.E., Wasbrough, E., and Meadows, L.A., Conserved properties of Drosophila and human spermatozoal mRNA repertoires, Proc. Biol. Sci., 2012, vol. 279, no. 1738, pp. 2636—2644. doi 10.1098/rspb. 2012.0153Google Scholar
  18. 18.
    Bourc’his, D. and Voinnet, O., A small-RNA perspective on gametogenesis, fertilization and early zygotic development, Science, 2010, vol. 330, no. 6004, pp. 617—622. doi 10.1126/science.1194776CrossRefGoogle Scholar
  19. 19.
    Krawetz, S.A., Kruger, A., and Lalancette, C., A survey of small RNAs in human sperm, Hum. Reprod., 2011, vol. 26, no. 12, pp. 340—3412. doi 10.1093/humrep/der329CrossRefGoogle Scholar
  20. 20.
    Sendler, E., Johnson, G.D., and Mao, S., Stability, delivery and functions of human sperm RNAs at fertilization, Nucleic Acids Res., 2013, vol. 41, no. 7, pp. 4104—4117. doi 10.1093/nar/gkt132CrossRefGoogle Scholar
  21. 21.
    Jodar, M., Selvaraju, S., Sendler, E., et al., The presence, role and clinical use of spermatozoal RNAs, Hum. Reprod. Update, 2013, vol. 19, no. 6, pp. 604—624. doi 10.1093/humupd/dmt031CrossRefGoogle Scholar
  22. 22.
    Goodrich, R.J., Anton, E., and Krawetz, S.A., Isolating mRNA and small noncoding RNAs from human sperm, Methods Mol. Biol., 2013, no. 927, pp. 385—396. doi 10.1007/978-1-62703-038-0_33Google Scholar
  23. 23.
    Gilbert, I., Bissonnette, N., Boissonneault, G., et al., A molecular analysis of the population of mRNA in bovine spermatozoa, Reproduction, 2007, vol. 133, no. 6, pp. 1073—1086. doi 10.1530/REP-06-0292CrossRefGoogle Scholar
  24. 24.
    Dadoune, J.P., Pawlak, A., Alfonsi, M.F., and Siffroi, J.P., Identification of transcripts by macroarrays, RT-PCR and in situ hybridization in human ejaculate spermatozoa, Mol. Hum. Reprod., 2005, vol. 11, no. 2, pp. 133—140. doi 10.1093/molehr/gah137CrossRefGoogle Scholar
  25. 25.
    Modi, D., Shah, C., Sachdeva, G., et al., Ontogeny and cellular localization of SRY transcripts in the human testes and its detection in spermatozoa, Reproduction, 2005, vol. 130, no. 5, pp. 603—613. doi 10.1530/rep.1.00413CrossRefGoogle Scholar
  26. 26.
    Zhao, Y., Li, Q., Yao, C., et al., Characterization and quantification of mRNA transcripts in ejaculated spermatozoa of fertile men by serial analysis of gene expression, Hum. Reprod., 2006, vol. 21, no. 6, pp. 1583—1590. doi 10.1093/humrep/del027CrossRefGoogle Scholar
  27. 27.
    Di Giammartino, D.C., Nishida, K., and Manley, J.L., Mechanisms and consequences of alternative polyadenylation, Mol. Cell, 2011, vol. 43, no. 6, pp. 853—866. doi 10.1016/j.molcel.2011.08.017CrossRefGoogle Scholar
  28. 28.
    Makarova, Yu.A. and Kramerov, D.A., Noncoding RNAs, Biochemistry (Moscow), 2007, vol. 72, no. 11, pp. 1161—1178. Scholar
  29. 29.
    Ostermeier, G.C., Miller, D., Huntriss, J.D., et al., Reproductive biology: delivering spermatozoan RNA to the oocyte, Nature, 2004, vol. 429, no. 6988, p. 154. doi 10.1038/429154aCrossRefGoogle Scholar
  30. 30.
    Liu, W.M., Pang, R.T.K., Chiu, P.C.N., et al., Sperm-borne microRNA-34c is required for the first cleavage division in mouse, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 2, pp. 490—494. doi 10.1073/pnas.1110368109CrossRefGoogle Scholar
  31. 31.
    Hammoud, S.S., Nix, D.A., Zhang, H., et al., Distinctive chromatin in human sperm packages genes for embryo development, Nature, 2009, vol. 460, no. 7254, pp. 473—478. doi 10.1038/nature08162CrossRefGoogle Scholar
  32. 32.
    Beraldi, R., Pittoggi, C., Sciamanna, I., et al., Expression of LINE-1 retroposons is essential for murine preimplantation development, Mol. Reprod. Dev., 2006, vol. 73, no. 3, pp. 279—287. doi 10.1002/mrd.20423CrossRefGoogle Scholar
  33. 33.
    Georgiou, I., Noutsopoulos, D., Dimitriadou, E., et al., Retrotransposon RNA expression and evidence for retrotransposition events in human oocytes, Hum. Mol. Genet., 2009, vol. 18, no. 7, pp. 1221—1228. doi 10.1093/hmg/ddp022CrossRefGoogle Scholar
  34. 34.
    van der Heijden, G.W. and Bortvin, A., Transient relaxation of transposon silencing at the onset of mammalian meiosis, Epigenetics, 2009, vol. 4, no. 2, pp. 76—79.CrossRefGoogle Scholar
  35. 35.
    Moazed, D., Small RNAs in transcriptional gene silencing and genome defense, Nature, 2009, vol. 457, no. 7228, pp. 413—420. doi 10.1038/nature07756CrossRefGoogle Scholar
  36. 36.
    Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M., et al., MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis, PLoS One, 2008, vol. 3, no. 3, p. 1738. doi 10.1371/journal.pone.0001738CrossRefGoogle Scholar
  37. 37.
    Korhonen, H.M., Meikar, O., Yadav, R.P., et al., Dicer is required for haploid male germ cell differentiation in mice, PLoS One, 2011, vol. 6, no. 9, p. 24821. doi 10.1371/journal.pone.0024821CrossRefGoogle Scholar
  38. 38.
    Wu, Q., Song, R., Ortogero, N., et al., The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis, J. Biol. Chem., 2012, vol. 287, no. 30, pp. 25173—25190. doi 10.1074/jbc.M112.362053CrossRefGoogle Scholar
  39. 39.
    Kim, D.H., Saetrom, P., Snove, O., and Rossi, J.J., MicroRNA-directed transcriptional gene silencing in mammalian cells, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 42, pp. 16230—16235. doi 10.1073/pnas.0808830105CrossRefGoogle Scholar
  40. 40.
    Place, R.F., Li, L.C., Pookot, D., et al., MicroRNA-373 induces expression of genes with complementary promoter sequences, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 5, pp. 1608—1613. doi 10.1073/pnas.0707594105CrossRefGoogle Scholar
  41. 41.
    Khraiwesh, B., Arif, M.A., Seumel, G.I., et al., Transcriptional control of gene expression by microRNAs, Cell, 2010, vol. 140, no. 1, pp. 111—122. doi 10.1016/j.cell.2009.12.023CrossRefGoogle Scholar
  42. 42.
    Peng, H., Shi, J., Zhang, Y., et al., A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm, Cell Res., 2012, vol. 22, no. 11, pp. 1609—1612. doi 10.1038/cr.2012.141CrossRefGoogle Scholar
  43. 43.
    Das, P.J., McCarthy, F., Vishnoi, M., et al., Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq, PLoS One, 2013, vol. 8, no. 2, p. 56535. doi 10.1371/journal.pone.0056535CrossRefGoogle Scholar
  44. 44.
    Vassena, R., Boué, S., González-Roca, E., et al., Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development, Development, 2011, vol. 138, no. 17, pp. 3699—3709. doi 10.1242/dev.064741CrossRefGoogle Scholar
  45. 45.
    Xu, Z., Jiang, J., Xu, C., et al., MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells, PLoS One, 2013, vol. 8, no. 1, p. 53146. doi 10.1371/journal.pone.0053146CrossRefGoogle Scholar
  46. 46.
    Torres-Padilla, M.E., Parfitt, D.E., Kouzarides, T., and Zernicka-Goetz, M., Histone arginine methylation regulates pluripotency in the early mouse embryo, Nature, 2007, vol. 445, no. 7124, pp. 214—218. doi 10.1038/nature05458CrossRefGoogle Scholar
  47. 47.
    Girard, A., Sachidanandam, R., Hannon, G.J., and Carmell, M.A., A germline-specific class of small RNAs binds mammalian Piwi proteins, Nature, 2006, vol. 442, no. 7099, pp. 199—202. doi 10.1038/nature04917Google Scholar
  48. 48.
    Kawano, M., Kawaji, H., Grandjean, V., et al., Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos, PLoS One, 2012, vol. 7, no. 9, p. 44542. doi 10.1371/journal.pone.0044542CrossRefGoogle Scholar
  49. 49.
    Ishizu, H., Siomi, H., and Siomi, M.C., Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines, Genes Dev., 2012, vol. 26, no. 21, pp. 2361—2373. doi 10.1101/gad.203786.112CrossRefGoogle Scholar
  50. 50.
    Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T.W., et al., Mili, a mammalian member of piwi family gene, is essential for spermatogenesis, Development, 2004, vol. 131, no. 4, pp. 839—849. doi 10.1242/dev.00973CrossRefGoogle Scholar
  51. 51.
    Carmell, M.A., Girard, A., van de Kant, H.J.G., et al., MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline, Dev. Cell, 2007, vol. 12, no. 4, pp. 503—514. doi 10.1016/j.devcel.2007.03.001CrossRefGoogle Scholar
  52. 52.
    Rudneva, S.A. and Khachenkova, A.A., Role of microRNA in spermatogenesis, Androl. Genital. Khir., 2016, vol. 17, no. 3, pp. 23—37.Google Scholar
  53. 53.
    Steger, K., Klonisch, T., Gavenis, K., et al., Expression of mRNA and protein of nucleoproteins during human spermiogenesis, Mol. Hum. Reprod., 1998, vol. 4, no. 10, pp. 939—945.CrossRefGoogle Scholar
  54. 54.
    Aoki, V.W., Emery, B.R., and Carrell, D.T., Global sperm deoxyribonucleic acid methylation is unaffected in protamine-deficient infertile males, Fertil. Steril., 2006, vol. 86, no. 5, pp. 1541—1543. doi 10.1016/j.fertnstert.2006.04.023CrossRefGoogle Scholar
  55. 55.
    Steger, K., Wilhelm, J., Konrad, L., et al., Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men, Hum. Reprod., 2008, vol. 23, no. 1, pp. 11—16. doi 10.1093/humrep/dem363CrossRefGoogle Scholar
  56. 56.
    Kempisty, B., Depa-Martynow, M., Lianeri, M., et al., Evaluation of protamines 1 and 2 transcript contents in spermatozoa from asthenozoospermic men, Folia Histochem. Cytobiol., 2007, vol. 45, no. 1, pp. 109—113.Google Scholar
  57. 57.
    Lalancette, C., Platts, A.E., Johnson, G.D., et al., Identification of human sperm transcripts as candidate markers of male fertility, J. Mol. Med., 2009, vol. 87, no. 7, pp. 735—748. doi 10.1007/s00109-009-0485-9CrossRefGoogle Scholar
  58. 58.
    Montjean, D., De La Grange, P., Gentien, D., et al., Sperm transcriptome profiling in oligozoospermia, J. Assist. Reprod. Genet., 2012, vol. 29, no. 1, pp. 3—10. doi 10.1007/s10815-011-9644-3CrossRefGoogle Scholar
  59. 59.
    Hu, Z., Xia, Y., Guo, X., et al., A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia, Nat. Genet., 2011, vol. 44, no. 2, pp. 183—186. doi 10.1038/ng.1040CrossRefGoogle Scholar
  60. 60.
    Maduro, M.R. and Lamb, D.J., Understanding new genetics of male infertility, J. Urol., 2002, vol. 168, no. 5, pp. 2197—2205. doi 10.1097/07.ju.0000023290. 61978.b2CrossRefGoogle Scholar
  61. 61.
    Bryson, C.F., Ramasamy, R., Sheehan, M., et al., Severe testicular atrophy does not affect the success of microdissection testicular sperm extraction, J. Urol., 2014, vol. 191, no. 1, pp. 175—178. doi 10.1016/j.juro. 2013.07.065CrossRefGoogle Scholar
  62. 62.
    Shin, D.H. and Turek, P.J., Sperm retrieval techniques, Nat. Rev. Urol., 2013, vol. 10, no. 12, pp. 723—730. doi 10.1038/nrurol.2013.262CrossRefGoogle Scholar
  63. 63.
    Vernaeve, V., Verheyen, G., Goossens, A., et al., How successful is repeat testicular sperm extraction in patients with azoospermia?, Hum. Reprod., 2006, vol. 21, no. 6, pp. 1551—1554. doi 10.1093/humrep/del012CrossRefGoogle Scholar
  64. 64.
    Yu, Q., Gu, X., Shang, X., et al., Discrimination and characterization of Sertoli cell-only syndrome in non-obstructive azoospermia using cell-free seminal DDX4, Reprod. Biomed. Online, 2016, vol. 33, no. 2, pp. 189—196. doi 10.1016/j.rbmo.2016.05.001CrossRefGoogle Scholar
  65. 65.
    Abdallah, W., Hashad, D., Abdelmaksoud, R., and Hashad, M.E., Does detection of DDX4 mRNA in cell free seminal plasma represents a reliable non-invasive germ cell marker in patients with non-obstructive azoospermia?, Eur. Urol., 2017, vol. 16, no. 3, pp. 1001—1002. doi 10.1016/S1569-9056(17)30633-4CrossRefGoogle Scholar
  66. 66.
    Lalancette, C., Miller, D., Li, Y., and Krawetz, S., Paternal contributions: new functional insights for spermatozoal RNA, J. Cell. Biochem., 2008, vol. 104, no. 5, pp. 1570—1579.CrossRefGoogle Scholar
  67. 67.
    Garrido, N., Martínez-Conejero, J.A., Jauregui, J., et al., Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome, Fertil. Steril., 2009, vol. 91, no. 4, pp. 1307—1310. doi 10.1016/j.fertnstert.2008.01.078CrossRefGoogle Scholar
  68. 68.
    García-Herrero, S., Garrido, N., Martínez-Conejero, J.A., et al., Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI, Reprod. Biomed. Online, 2011, vol. 22, no. 1, pp. 25—36. doi 10.1016/j.rbmo.2010.09.013CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Ott Research Institute of Obstetrics, Gynecology, and ReproductologySt. PetersburgRussia
  2. 2.Department of Genetics and Biotechnology, St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations