Advertisement

Russian Journal of Genetics

, Volume 54, Issue 12, pp 1479–1486 | Cite as

Genetic Factors of Comorbidity of Pelvic Organ Prolapse, Stress Urinary Incontinence, and Chronic Venous Insufficiency of the Lower Limbs in Women

  • M. B. KhadzhievaEmail author
  • S. V. Kamoeva
  • A. V. Ivanova
  • L. E. Salnikova
HUMAN GENETICS
  • 14 Downloads

Abstract

A genetic association study was carried out to test for a correlation between polymorphic variants of genes involved in the organization of elastic fibers (FBLN5, LOXL1, ELN, and FBN1) and multiple forms of connective tissue (CT) pathology, including pelvic organ prolapse (POP), stress urinary incontinence (SUI), and chronic venous insufficiency of the lower limbs (CVI). The FBLN5 haplotype rs12586948(A)-rs2284337(A)-rs2430347(A)-rs2430369(C), associated with a high risk for each of the studied CT disorders, was identified. For SUI and POP, common risk FBLN5 haplotype rs12586948(A)-rs2284337(A)-rs2430347(A)-rs2498841(G)-rs2018736(C)-rs2430369(C)-rs2245701(G) was detected. These allele groups, as well as the LOXL1 haplotype rs2165241(C)-rs2304719(T)-rs2415231(C), correlated with an increase in the number of coexisting connective tissue pathologies (POP, SUI, and CVI). Thus, an association between the FBLN5 and LOXL1 haplotypes and the CT disease comorbidity was identified.

Keywords:

pelvic organ prolapse stress urinary incontinence chronic venous insufficiency of the lower limbs comorbidity the FBLN5 and LOXL1 genes 

Notes

REFERENCES

  1. 1.
    Hendrix, S.L., Clark, A., Nygaard, I., et al., Pelvic organ prolapse in the Women’s Health Initiative: gravity and gravidity, Am. J. Obstet. Gynecol., 2002, vol. 186, pp. 1160—1166.CrossRefGoogle Scholar
  2. 2.
    Tegerstedt, G., Maehle-Schmidt, M., Nyrén, O., and Hammarström, M., Prevalence of symptomatic pelvic organ prolapse in a Swedish population, Int. Urogynecol. J. Pelvic Floor Dysfunct., 2005, vol. 16, no. 6, pp. 497—503. doi 10.1007/s00192-005-1326-1CrossRefGoogle Scholar
  3. 3.
    Walker, G.J. and Gunasekera, P., Pelvic organ prolapse and incontinence in developing countries: review of prevalence and risk factors, Int. Urogynecol. J., 2011, vol. 22(2), pp. 127—135. doi 10.1007/s00192-010-1215-0CrossRefGoogle Scholar
  4. 4.
    Adamyan, L.V., Smol’nova, T.Yu., and Sidorov, V.V., Laser Doppler flowmetry in the study of microvasculature in patients with neoplastic diseases of the genitals, Vopr. Ginekol., Akush. Perinatol., 2006, no. 5, pp. 34—39.Google Scholar
  5. 5.
    Sukhikh, G.T., Danilov, A.Yu., and Botasheva, D.A., The role of immunohistochemical and genetic factors in the etiology refinement and pathogenesis of genital prolapse in women, Ross. Vestn. Akush. Ginekol., 2012, no. 2, pp. 47—50.Google Scholar
  6. 6.
    Shkarupa, D.D., Nederzhanie mochi i opushchenie tazovykh organov u zhenshchin (Urinary Incontinence and Pelvic Organ Prolapse in Women), Moscow: MEDpress-Inform, 2015.Google Scholar
  7. 7.
    Quiroz, L.H., Muñoz, A., Shippey, S.H., et al., Vaginal parity and pelvic organ prolapse, J. Reprod. Med., 2010, vol. 55, pp. 93—98.Google Scholar
  8. 8.
    Memon, H.U. and Handa, V.L., Vaginal childbirth and pelvic floor disorders, Women’s Health (London), 2013, vol. 9, no. 3, pp. 265—277. doi 10.2217/whe.13.17CrossRefGoogle Scholar
  9. 9.
    Ellerkmann, R.M., Cundiff, G.W., Melick, C.F., et al., Correlation of symptoms with location and severity of pelvic organ prolapse, Am. J. Obstet. Gynecol., 2001, vol. 185, no. 6, pp. 1332—1337. doi 10.1067/mob. 2001.119078CrossRefGoogle Scholar
  10. 10.
    Zargham, M., Alizadeh, F., Moayednia, A., et al., The role of pelvic organs prolapse in the etiology of urinary incontinence in women, Adv. Biomed. Res., 2013, vol. 2: 22. doi 10.4103/2277-9175.108010CrossRefGoogle Scholar
  11. 11.
    Naftulovich, R.A., Yashchuk, A.G., Maslennikov, A.V., and Alakaeva, D.R., Features of family history in patients with pelvic lowering and prolapse, Ross. Vestn. Akush. Ginekol., 2013, no. 1, pp. 30—36.Google Scholar
  12. 12.
    Smol’nova, T.Yu., Savel’ev, S.V., Yakovleva, N.I., et al., The phenomenon of generalized cytopathy in patients with the lowering and prolapse of internal genital organs is a phenotypic manifestation of the connective tissue dysplasia syndrome at the tissue level, Med. Vestn. Sev. Kavk., 2008, no. 2, pp. 44—49.Google Scholar
  13. 13.
    Lammers, K., Lince, S.L., Spath, M.A., et al., Pelvic organ prolapse and collagen-associated disorders, Int. Urogynecol. J., 2012, vol. 23, pp. 313—319. doi 10.1007/s00192-011-1532-yCrossRefGoogle Scholar
  14. 14.
    Miranne, J.M., Marek, T., Mete, M., and Iglesia, C.B., The association of vaginal wind and abdominal striae with pelvic organ prolapse, J. Minimally Invasive Gynecol., 2014, vol. 21, p. S19.CrossRefGoogle Scholar
  15. 15.
    Veit-Rubin, N., Cartwright, R., Singh, A.U., et al., Association between joint hypermobility and pelvic organ prolapse in women: a systematic review and meta-analysis, Int. Urogynecol. J., 2016, vol. 27, no. 10, pp. 1469—1478. doi 10.1007/s00192-015-2896-1Google Scholar
  16. 16.
    Salnikova, L.E., Khadzhieva, M.B., and Kolobkov, D.S., Biological findings from the PheWAS catalog: focus on connective tissue-related disorders (pelvic floor dysfunction, abdominal hernia, varicose veins and hemorrhoids), Hum. Genet., 2016, vol. 135, no. 7, pp. 779—795. doi 10.1007/s00439-016-1672-8CrossRefGoogle Scholar
  17. 17.
    Chen, Y., Peng, W., Raffetto, J.D., and Khalil, R.A., Matrix metalloproteinases in remodeling of lower extremity veins and chronic venous disease, Prog. Mol. Biol. Transl. Sci., 2017, vol. 147, pp. 267—299. doi 10.1016/bs.pmbts.2017.02.003CrossRefGoogle Scholar
  18. 18.
    Khadzhieva, M.B., Kamoeva, S.V., Ivanova, A.V., et al., Elastogenesis-related gene polymorphisms and the risk of pelvic organ prolapse development, Russ. J. Genet., 2015, vol. 51, no. 10, pp. 1026—1032. https://doi.org/.10.1134/S1022795415100087.CrossRefGoogle Scholar
  19. 19.
    Puzyrev, V.P., Genetic bases of human comorbidity, Russ. J. Genet., 2015, vol. 51, no. 4, pp. 408—417. https://doi.org/.10.1134/S1022795415040092.CrossRefGoogle Scholar
  20. 20.
    Faivre, L., Gorlin, R.J., Wirtz, M.K., et al., In frame fibrillin-1 gene deletion in autosomal dominant Weill—Marchesani syndrome, J. Med. Genet., 2003, vol. 40, no. 1, pp. 34—36.CrossRefGoogle Scholar
  21. 21.
    Loeys, B.L., Gerber, E.E., Riegert-Johnson, D., et al., Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome, Sci. Transl. Med., 2010, vol. 2, no. 23, p. 23ra20. doi 10.1126/scitranslmed.3000488CrossRefGoogle Scholar
  22. 22.
    Le Goff, C., Mahaut, C., Wang, L.W., et al., Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias, Am. J. Hum. Genet., 2011, vol. 89, no. 1, pp. 7—14. doi 10.1016/j.ajhg.2011.05.012CrossRefGoogle Scholar
  23. 23.
    Yang, G., Chu, M., Zhai, X., and Zhao, J., A novel FBN1 mutation in a Chinese family with isolated ectopia lentis, Mol. Vis., 2012, vol. 18, pp. 945—950.Google Scholar
  24. 24.
    Wilson, B.T., Jensen, S.A., McAnulty, C.P., et al., Juvenile idiopathic arthritis, mitral valve prolapse and a familial variant involving the integrin-binding fragment of FBN1, Am. J. Med. Genet., Part A, 2013, vol. 161A, no. 8, pp. 2047—2051. doi 10.1002/ajmg.a.36011CrossRefGoogle Scholar
  25. 25.
    Xiao, Y., Liu, X., Guo, X., et al., A novel FBN1 mutation causes autosomal dominant Marfan syndrome, Mol. Med. Rep., 2017, vol. 16, no. 5, pp. 7321—7328. doi 10.3892/mmr.2017.7544CrossRefGoogle Scholar
  26. 26.
    Sansilvestri-Morel, P., Fioretti, F., Rupin, A., et al., Comparison of extracellular matrix in skin and saphenous veins from patients with varicose veins: does the skin reflect venous matrix changes?, Clin. Sci. (London), 2007. vol. 112, no. 4, pp. 229—239. doi 10.1042/CS20060170CrossRefGoogle Scholar
  27. 27.
    Thorleifsson, G.L., Magnusson, K.P., Sulem, P., et al., Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma, Science, 2007, vol. 317, no. 5843, pp. 1397—1400. doi 10.1126/science.1146554CrossRefGoogle Scholar
  28. 28.
    Wang, L., Yu, Y., Fu, S., et al., LOXL1 gene polymorphism with exfoliation syndrome/exfoliation glaucoma: a meta-analysis, J. Glaucoma, 2016, vol. 25, no. 1, pp. 62—94. doi 10.1097/IJG.0000000000000128CrossRefGoogle Scholar
  29. 29.
    Wirostko, B.M., Curtin, K., Ritch, R., et al., Risk for exfoliation syndrome in women with pelvic organ prolapse: a Utah Project on Exfoliation Syndrome (UPEXS) study, JAMA Ophthalmol., 2016, vol. 134, no. 11, pp. 1255—1262. doi 10.1001/jamaophthalmol.2016.3411CrossRefGoogle Scholar
  30. 30.
    Pascual, G., Mendieta, C., and Mecham, R.P., et al., Down-regulation of lysyl oxydase-like in aging and venous insufficiency, Histol. Histopathol., 2008, vol. 23, no. 2, pp. 179—186. doi 10.14670/HH-23.179Google Scholar
  31. 31.
    Zhou, Y.L., Ling, O., and Bo, L., Expression and significance of lysyl oxidase-like 1 and fibulin-5 in the cardinal ligament tissue of patients with pelvic floor dysfunction, J. Biomed. Res., 2013, vol. 27, no. 1, pp. 23—28. doi 10.7555/JBR.27.20110142Google Scholar
  32. 32.
    Auer-Grumbach, M., Weger, M., Fink-Puches, R., et al., Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin, Brain, 2011, vol. 134, part 6, pp. 1839—1852. doi 10.1093/brain/awr076CrossRefGoogle Scholar
  33. 33.
    Nakamura, T.L., Lozano, P.R., Ikeda, Y., et al., Fibulin-5/DANCE is essential for elastogenesis in vivo, Nature, 2002, vol. 415, no. 6868, pp. 171—175. doi 10.1038/415171aCrossRefGoogle Scholar
  34. 34.
    Noda, K., Nakamura, T., and Komatsu, Y., Fibulin-5 deficiency causes developmental defect of premaxillary bone in mice, Biochem. Biophys. Res. Commun., 2015, vol. 466, no. 3, pp. 585—591. doi 10.1016/j.bbrc.2015.09.089CrossRefGoogle Scholar
  35. 35.
    Wieslander, C.K., Rahn, D.D., McIntire, D.D., et al., Quantification of pelvic organ prolapse in mice: vaginal protease activity precedes increased MOPQ scores in fibulin 5 knockout mice, Biol. Reprod., 2009, vol. 80, no. 3, pp. 407—414. doi 10.1095/biolreprod.108.072900CrossRefGoogle Scholar
  36. 36.
    Budatha, M.L., Roshanravan, S., Zheng, Q., et al., Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans, J. Clin. Invest., 2011, vol. 121, no. 5, pp. 2048—2059. doi 10.1172/JCI45636CrossRefGoogle Scholar
  37. 37.
    Good, M.M., Montoya, T.I., Shi, H., et al., Thermosensitive hydrogels deliver bioactive protein to the vaginal wall, PLoS One, 2017, vol. 12, no. 10. e0186268. doi 10.1371/journal.pone.0186268CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. B. Khadzhieva
    • 1
    • 2
    • 3
    Email author
  • S. V. Kamoeva
    • 4
    • 5
  • A. V. Ivanova
    • 6
  • L. E. Salnikova
    • 1
    • 2
    • 3
  1. 1.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  2. 2.Rogachev National Research Center of Pediatric Hematology, Oncology, and ImmunologyMoscowRussia
  3. 3.Federal Research and Clinical Center of Intensive Care Medicine and RehabilitologyMoscowRussia
  4. 4.Pirogov Russian National Research Medical UniversityMoscowRussia
  5. 5.Central Clinical Hospital of the Russian Academy of SciencesMoscowRussia
  6. 6.Center of Gynecology, Reproductive and Aesthetic MedicineKrasnogorsk raionRussia

Personalised recommendations