Advertisement

Russian Journal of Genetics

, Volume 54, Issue 12, pp 1416–1428 | Cite as

Emerging Potential of Cancer Therapy—Binary Direct Interactions of Cancer and Stromal Cells

  • I. V. Alekseenko
  • G. S. Monastyrskaya
  • E. D. Sverdlov
REVIEWS AND THEORETICAL ARTICLES
  • 15 Downloads

Abstract

The review attempts to discuss the interaction of cancer cells and cells of the tumor microenvironment as well as the possibility of using them as a target for antitumor therapy.

Keywords:

cancer tumor microenvironment immune checkpoint molecules cancer-associated fibroblasts pancreas 

Notes

REFERENCES

  1. 1.
    Sverdlov, E.D., Genetic surgery—a right strategy to attack cancer, Curr. Gene Ther., 2011, vol. 11, no. 6, pp. 501—531.CrossRefGoogle Scholar
  2. 2.
    Sverdlov, E.D., Multidimensional complexity of cancer: simple solutions are needed, Biochemistry (Moscow), 2016, vol. 81, no. 7, pp. 731—738. https://doi.org/.10.1134/S0006297916070099.Google Scholar
  3. 3.
    Alizadeh, A.A., Aranda, V., Bardelli, A., et al., Toward understanding and exploiting tumor heterogeneity, Nat. Med., 2015, vol. 21, no. 8, pp. 846—853.CrossRefGoogle Scholar
  4. 4.
    Schnekenburger, M., Florean, C., Dicato, M., and Diederich, M., Epigenetic alterations as a universal feature of cancer hallmarks and a promising target for personalized treatments, Curr. Top Med. Chem., 2016, vol. 16, no. 7, pp. 745—776. doi 10.2174/1568026615666150825141330CrossRefGoogle Scholar
  5. 5.
    Hanahan, D. and Weinberg, R.A., The hallmarks of cancer, Cell, 2000, vol. 100, no. 1, pp. 57—70.CrossRefGoogle Scholar
  6. 6.
    Ramamonjisoa, N. and Ackerstaff, E., Characterization of the tumor microenvironment and tumor—stroma interaction by non-invasive preclinical imaging, Front. Oncol., 2017, vol. 7, p. 3. doi 10.3389/fonc.2017.00003CrossRefGoogle Scholar
  7. 7.
    Weinberg, R.A., Coming full circle—from endless complexity to simplicity and back again, Cell, 2014, vol. 157, no. 1, pp. 267—271. doi 10.1016/j.cell.2014.03.004CrossRefGoogle Scholar
  8. 8.
    Hanahan, D. and Coussens, L.M., Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell, 2012, vol. 21, no. 3, pp. 309—322. doi 10.1016/j.ccr.2012.02.022CrossRefGoogle Scholar
  9. 9.
    Hanahan, D. and Weinberg, R.A., Hallmarks of cancer: the next generation, Cell, 2011, vol. 144, no. 5, pp. 646—674.CrossRefGoogle Scholar
  10. 10.
    Horne, S.D., Pollick, S.A., and Heng, H.H., Evolutionary mechanism unifies the hallmarks of cancer, Int. J. Cancer, 2015, vol. 136, no. 9, pp. 2012—2021. doi 10.1002/ijc.29031CrossRefGoogle Scholar
  11. 11.
    Fouad, Y.A. and Aanei, C., Revisiting the hallmarks of cancer, Am. J. Cancer Res., 2017, vol. 7, no. 5, pp. 1016—1036.Google Scholar
  12. 12.
    Orimo, A. and Weinberg, R.A., Stromal fibroblasts in cancer: a novel tumor-promoting cell type, Cell Cycle, 2006, vol. 5, no. 15, pp. 1597—1601. doi 10.4161/cc.5.15.3112CrossRefGoogle Scholar
  13. 13.
    Gonda, T.A., Varro, A., Wang, T.C., and Tycko, B., Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy?, Semin. Cell Dev. Biol., 2010, vol. 21, no. 1, pp. 2—10. doi 10.1016/j.semcdb.2009.10.001CrossRefGoogle Scholar
  14. 14.
    De Palma, M. and Hanahan, D., The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities, Mol. Oncol., 2012, vol. 6, no. 2, pp. 111—127. doi 10.1016/j.molonc.2012.01.011CrossRefGoogle Scholar
  15. 15.
    Gascard, P. and Tlsty, T.D., Carcinoma-associated fibroblasts: orchestrating the composition of malignancy, Genes Dev., 2016, vol. 30, no. 9, pp. 1002—1019. doi 10.1101/gad.279737.116CrossRefGoogle Scholar
  16. 16.
    Chen, F., Zhuang, X., Lin, L., et al., New horizons in tumor microenvironment biology: challenges and opportunities, BMC Med., 2015, vol. 13, p. 45.CrossRefGoogle Scholar
  17. 17.
    Gandellini, P., Andriani, F., Merlino, G., et al., Complexity in the tumour microenvironment: cancer associated fibroblast gene expression patterns identify both common and unique features of tumour—stroma crosstalk across cancer types, Semin. Cancer Biol., 2015, vol. 35, pp. 96—106. doi 10.1016/j.semcancer.2015.08.008CrossRefGoogle Scholar
  18. 18.
    Stadler, M., Walter, S., Walzl, A., et al., Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment, Semin. Cancer Biol., 2015, vol. 35, pp. 107—124. doi 10.1016/j.semcancer.2015.08.007CrossRefGoogle Scholar
  19. 19.
    Zi, F., He, J., He, D., et al., Fibroblast activation protein alpha in tumor microenvironment: recent progression and implications (review), Mol. Med. Rep., 2015, vol. 11, no. 5, pp. 3203—3211.CrossRefGoogle Scholar
  20. 20.
    Raffaghello, L. and Dazzi, F., Classification and biology of tumour associated stromal cells, Immunol. Lett., 2015, vol. 168, no. 2, pp. 175—182. doi 10.1016/j.imlet.2015.06.016CrossRefGoogle Scholar
  21. 21.
    Bizzarri, M. and Cucina, A., Tumor and the microenvironment: a chance to reframe the paradigm of carcinogenesis?, Biomed. Res. Int., 2014, vol. 2014, p. 934038. doi 10.1155/2014/934038CrossRefGoogle Scholar
  22. 22.
    Reina-Campos, M., Moscat, J., and Diaz-Meco, M., Metabolism shapes the tumor microenvironment, Curr. Opin. Cell Biol., 2017, vol. 48, pp. 47—53. doi 10.1016/j.ceb.2017.05.006CrossRefGoogle Scholar
  23. 23.
    Sadelain, M., Riviere, I., and Brentjens, R., Targeting tumours with genetically enhanced t lymphocytes, Nat. Rev. Cancer, 2003, vol. 3, no. 1, pp. 35—45. doi 10.1038/nrc971CrossRefGoogle Scholar
  24. 24.
    Schumacher, T.N. and Schreiber, R.D., Neoantigens in cancer immunotherapy, Science, 2015, vol. 348, no. 6230, pp. 69—74.CrossRefGoogle Scholar
  25. 25.
    Martin, S.D., Coukos, G., Holt, R.A., and Nelson, B.H., Targeting the undruggable: immunotherapy meets personalized oncology in the genomic era, Ann. Oncol., 2015, vol. 26, no. 12, pp. 2367—2374.Google Scholar
  26. 26.
    Ziani, L., Chouaib, S., and Thiery, J., Alteration of the antitumor immune response by cancer-associated fibroblasts, Front. Immunol., 2018, vol. 9, p. 414. doi 10.3389/fimmu.2018.00414CrossRefGoogle Scholar
  27. 27.
    van der Burg, S.H., Arens, R., Ossendorp, F., et al., Vaccines for established cancer: overcoming the challenges posed by immune evasion, Nat. Rev. Cancer, 2016, vol. 16, no. 4, pp. 219—233.CrossRefGoogle Scholar
  28. 28.
    Muenst, S., Laubli, H., Soysal, S.D., et al., The immune system and cancer evasion strategies: therapeutic concepts, J. Int. Med., 2016, vol. 279, no. 6, pp. 541—562.CrossRefGoogle Scholar
  29. 29.
    Schreiber, R.D., Old, L.J., and Smyth, M.J., Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion, Science, 2011, vol. 331, no. 6024, pp. 1565—1570.CrossRefGoogle Scholar
  30. 30.
    Escors, D., Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy, New J. Sci., 2014, vol. 2014. doi 10.1155/2014/734515Google Scholar
  31. 31.
    Stambrook, P.J., Maher, J., and Farzaneh, F., Cancer immunotherapy: whence and whither, Mol. Cancer Res., 2017, vol. 15, no. 6, pp. 635—650. doi 10.1158/1541-7786.MCR-16-0427CrossRefGoogle Scholar
  32. 32.
    Baumeister, S.H., Freeman, G.J., Dranoff, G., and Sharpe, A.H., Coinhibitory pathways in immunotherapy for cancer, Annu. Rev. Immunol., 2016, vol. 34, pp. 539—573. doi 10.1146/annurev-immunol-032414-112049CrossRefGoogle Scholar
  33. 33.
    Marin-Acevedo, J.A., Dholaria, B., Soyano, A.E., et al., Next generation of immune checkpoint therapy in cancer: New developments and challenges, J. Hematol. Oncol., 2018, vol. 11, no. 1, p. 39. doi 10.1186/s13045-018-0582-8CrossRefGoogle Scholar
  34. 34.
    Marcucci, F., Rumio, C., and Corti, A., Tumor cell-associated immune checkpoint molecules—drivers of malignancy and stemness, Biochim. Biophys. Acta, 2017, vol. 1868, no. 2, pp. 571—583. doi 10.1016/j.bbcan.2017.10.006Google Scholar
  35. 35.
    Sharma, P. and Allison, J.P., The future of immune checkpoint therapy, Science, 2015, vol. 348, no. 6230, pp. 56—61.CrossRefGoogle Scholar
  36. 36.
    Sharpe, A.H., Introduction to checkpoint inhibitors and cancer immunotherapy, Immunol. Rev., 2017, vol. 276, no. 1, pp. 5—8. doi 10.1111/imr.12531CrossRefGoogle Scholar
  37. 37.
    Allison, J.P., Immune checkpoint blockade in cancer therapy: the 2015 Lasker—Debakey clinical medical research award, JAMA, 2015, vol. 314, no. 11, pp. 1113—1114. doi 10.1001/jama.2015.11929CrossRefGoogle Scholar
  38. 38.
    Villaruz, L.C., Kalyan, A., Zarour, H., and Socinski, M.A., Immunotherapy in lung cancer, Transl. Lung Cancer Res., 2014, vol. 3, no. 1, pp. 2—14. doi 10.3978/j.issn.2218-6751.2013.10.13Google Scholar
  39. 39.
    Munhoz, R.R. and Postow, M.A., Clinical development of pd-1 in advanced melanoma, Cancer J., 2018, vol. 24, no. 1, pp. 7—14. doi 10.1097/PPO.0000000000000299CrossRefGoogle Scholar
  40. 40.
    Postow, M. and Wolchok, J., Toxicities associated with checkpoint inhibitor immunotherapy, 2016. http://www.uptodate.com/contents/toxicities-associated-withcheckpoint-inhibitor-immunotherapy. Accessed February 22, 2018.Google Scholar
  41. 41.
    Alexander, W., The checkpoint immunotherapy revolution: what started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge, P. T., 2016, vol. 41, no. 3, pp. 185—191.Google Scholar
  42. 42.
    Calabrese, L. and Velcheti, V., Checkpoint immunotherapy: good for cancer therapy, bad for rheumatic diseases, Ann. Rheum. Dis., 2017, vol. 76, no. 1, pp. 1—3. doi 10.1136/annrheumdis-2016-209782CrossRefGoogle Scholar
  43. 43.
    Madden, D.L., From a patient advocate’s perspective: does cancer immunotherapy represent a paradigm shift?, Curr. Oncol. Rep., 2018, vol. 20, no. 1, p. 8. doi 10.1007/s11912-018-0662-5CrossRefGoogle Scholar
  44. 44.
    Abdin, S.M., Zaher, D.M., Arafa, E.A., and Omar, H.A., Tackling cancer resistance by immunotherapy: updated clinical impact and safety of pd-1/pd-l1 inhibitors, Cancers (Basel), 2018, vol. 10, no. 2. doi 10.3390/cancers10020032Google Scholar
  45. 45.
    Postow, M.A. and Hellmann, M.D., Adverse events associated with immune checkpoint blockade, N. Engl. J. Med., 2018, vol. 378, no. 12, p. 1165.CrossRefGoogle Scholar
  46. 46.
    Brown, J.S., Sundar, R., and Lopez, J., Combining DNA damaging therapeutics with immunotherapy: more haste, less speed, Br. J. Cancer., 2018, vol. 118, no. 3, pp. 312—324. doi 10.1038/bjc.2017.376CrossRefGoogle Scholar
  47. 47.
    Hosoi, A., Takeda, K., Nagaoka, K., et al., Increased diversity with reduced “Diversity evenness” of tumor infiltrating t-cells for the successful cancer immunotherapy, Sci. Rep., 2018, vol. 8, no. 1, p. 1058. doi 10.1038/s41598-018-19548-yCrossRefGoogle Scholar
  48. 48.
    Perrimon, N., Pitsouli, C., and Shilo, B.Z., Signaling mechanisms controlling cell fate and embryonic patterning, Cold Spring Harbor Perspect. Biol., 2012, vol. 4, no. 8. a005975. doi 10.1101/cshperspect.a005975CrossRefGoogle Scholar
  49. 49.
    Sundar, R., Chenard-Poirier, M., Collins, D.C., and Yap, T.A., Imprecision in the era of precision medicine in non-small cell lung cancer, Front. Med. (Lausanne), 2017, vol. 4, p. 39. doi 10.3389/fmed.2017.00039CrossRefGoogle Scholar
  50. 50.
    Minocha, S. and Das, S., Gleevec (imatinib): a breakthrough in cancer treatment, J. Drug Discovery Ther., 2017, vol. 5, no. 8, pp. 13—17.Google Scholar
  51. 51.
    Mallick, P., Complexity and information: cancer as a multi-scale complex adaptive system, in Physical Science and Engineering Advances in Life Science and Oncology, 2015, pp. 5—29.Google Scholar
  52. 52.
    Prasad, V., Perspective: the precision-oncology illusion, Nature, 2016, vol. 537, no. 7619, p. S63. doi 10.1038/537S63aCrossRefGoogle Scholar
  53. 53.
    Tannock, I.F. and Hickman, J.A., Limits to personalized cancer medicine, N. Engl. J. Med., 2016, vol. 375, no. 13, pp. 1289—1294. doi 10.1056/NEJMsb1607705CrossRefGoogle Scholar
  54. 54.
    Haynes, B., Sarma, A., Nangia-Makker, P., and Shekhar, M.P., Breast cancer complexity: implications of intratumoral heterogeneity in clinical management, Cancer Metastasis Rev., 2017, vol. 36, no. 3, pp. 547—555. doi 10.1007/s10555-017-9684-yCrossRefGoogle Scholar
  55. 55.
    Taube, J.M., Anders, R.A., Young, G.D., et al., Colocalization of inflammatory response with b7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape, Sci. Transl. Med., 2012, vol. 4, no. 127, pp. 127—137. doi 10.1126/scitranslmed.3003689CrossRefGoogle Scholar
  56. 56.
    Cogdill, A.P., Andrews, M.C., and Wargo, J.A., Hallmarks of response to immune checkpoint blockade, Br. J. Cancer, 2017, vol. 117, no. 1, pp. 1—7. doi 10.1038/bjc.2017.136CrossRefGoogle Scholar
  57. 57.
    Teng, M.W., Ngiow, S.F., Ribas, A., and Smyth, M.J., Classifying cancers based on t-cell infiltration and pd-l1, Cancer Res., 2015, vol. 75, no. 11, pp. 2139—2145. doi 10.1158/0008-5472.CAN-15-0255CrossRefGoogle Scholar
  58. 58.
    Zhang, Y. and Chen, L., Classification of advanced human cancers based on tumor immunity in the microenvironment (time) for cancer immunotherapy, JAMA Oncol., 2016, vol. 2, no. 11, pp. 1403—1404. doi 10.1001/jamaoncol.2016.2450CrossRefGoogle Scholar
  59. 59.
    Koh, J., Ock, C.Y., Kim, J.W., et al., Clinicopathologic implications of immune classification by pd-l1 expression and cd8-positive tumor-infiltrating lymphocytes in stage ii and iii gastric cancer patients, Oncotarget, 2017, vol. 8, no. 16, pp. 26356—26367. doi 10.18632/oncotarget.15465Google Scholar
  60. 60.
    Ock, C.Y., Keam, B., Kim, S., et al., Pan-cancer immunogenomic perspective on the tumor microenvironment based on pd-l1 and cd8 t-cell infiltration, Clin. Cancer Res., 2016, vol. 22, no. 9, pp. 2261—2270. doi 10.1158/1078-0432.CCR-15-2834CrossRefGoogle Scholar
  61. 61.
    Loo, K. and Daud, A., Emerging biomarkers as predictors to anti-pd1/pd-l1 therapies in advanced melanoma, Immunotherapy, 2016, vol. 8, no. 7, pp. 775—784. doi 10.2217/imt-2016-0039CrossRefGoogle Scholar
  62. 62.
    Dempke, W.C.M., Fenchel, K., Uciechowski, P., and Dale, S.P., Second- and third-generation drugs for immuno-oncology treatment—the more the better?, Eur. J. Cancer, 2017, vol. 74, pp. 55—72. doi 10.1016/j.ejca.2017.01.001CrossRefGoogle Scholar
  63. 63.
    Fearon, D.T., The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance, Cancer Immunol. Res., 2014, vol. 2, no. 3, pp. 187—193. doi 10.1158/2326-6066.CIR-14-0002CrossRefGoogle Scholar
  64. 64.
    Day, D., Monjazeb, A.M., Sharon, E., et al., From famine to feast: developing early-phase combination immunotherapy trials wisely, Clin. Cancer Res., 2017, vol. 23, no. 17, pp. 4980—4991. doi 10.1158/1078-0432.CCR-16-3064CrossRefGoogle Scholar
  65. 65.
    Lamprecht, S., Sigal-Batikoff, I., Shany, S., et al., Teaming up for trouble: cancer cells, transforming growth factor-beta1 signaling and the epigenetic corruption of stromal naive fibroblasts, Cancers (Basel), 2018, vol. 10, no. 3. doi 10.3390/cancers10030061Google Scholar
  66. 66.
    Kalluri, R., The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, 2016, vol. 16, no. 9, pp. 582—598. doi 10.1038/nrc.2016.73CrossRefGoogle Scholar
  67. 67.
    Shiga, K., Hara, M., Nagasaki, T., et al., Cancer-associated fibroblasts: their characteristics and their roles in tumor growth, Cancers (Basel), 2015, vol. 7, no. 4, pp. 2443—2458. doi 10.3390/cancers7040902CrossRefGoogle Scholar
  68. 68.
    Pidsley, R., Zotenko, E., Peters, T.J., et al., Critical evaluation of the illumina methylationepic beadchip microarray for whole-genome DNA methylation profiling, Genome Biol., 2016, vol. 17, no. 1, p. 208. doi 10.1186/s13059-016-1066-1CrossRefGoogle Scholar
  69. 69.
    Liao, Z., Tan, Z.W., Zhu, P., and Tan, N.S., Cancer-associated fibroblasts in tumor microenvironment— accomplices in tumor malignancy, Cell. Immunol., 2018. doi 10.1016/j.cellimm.2017.12.003Google Scholar
  70. 70.
    Tran, E., Chinnasamy, D., Yu, Z., et al., Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia, J. Exp. Med., 2013, vol. 210, no. 6, pp. 1125—1135. doi 10.1084/jem.20130110CrossRefGoogle Scholar
  71. 71.
    Bhome, R., Al Saihati, H.A., Goh, R.W., et al., Translational aspects in targeting the stromal tumour microenvironment: from bench to bedside, New Horiz. Transl. Med., 2016, vol. 3, no. 1, pp. 9—21. doi 10.1016/j.nhtm.2016.03.001Google Scholar
  72. 72.
    Kumar, V., Patel, S., Tcyganov, E., and Gabrilovich, D.I., The nature of myeloid-derived suppressor cells in the tumor microenvironment, Trends Immunol., 2016, vol. 37, no. 3, pp. 208—220. doi 10.1016/j.it.2016.01.004CrossRefGoogle Scholar
  73. 73.
    Jacobs, J., Smits, E., Lardon, F., et al., Immune checkpoint modulation in colorectal cancer: what’s new and what to expect, J. Immunol. Res., 2015, vol. 2015, p. 158038. doi 10.1155/2015/158038CrossRefGoogle Scholar
  74. 74.
    Lakins, M.A., Ghorani, E., Munir, H., et al., Cancer-associated fibroblasts induce antigen-specific deletion of cd8 (+) t cells to protect tumour cells, Nat. Commun., 2018, vol. 9, no. 1, p. 948. doi 10.1038/s41467-018-03347-0CrossRefGoogle Scholar
  75. 75.
    Rozali, E.N., Hato, S.V., Robinson, B.W., et al., Programmed death ligand 2 in cancer-induced immune suppression, Clin. Dev. Immunol., 2012, vol. 2012, p. 656340. doi 10.1155/2012/656340CrossRefGoogle Scholar
  76. 76.
    Nazareth, M.R., Broderick, L., Simpson-Abelson, M.R., et al., Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated t cells, J. Immunol., 2007, vol. 178, no. 9, pp. 5552—5562.CrossRefGoogle Scholar
  77. 77.
    Khalili, J.S., Liu, S., Rodriguez-Cruz, T.G., et al., Oncogenic braf(v600e) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma, Clin. Cancer Res., 2012, vol. 18, no. 19, pp. 5329—5340. doi 10.1158/1078-0432.CCR-12-1632CrossRefGoogle Scholar
  78. 78.
    Costa, A., Kieffer, Y., Scholer-Dahirel, A., et al., Fibroblast heterogeneity and immunosuppressive environment in human breast cancer, Cancer Cell, 2018, vol. 33, no. 3, pp. 463—479. e410. doi 10.1016/j.ccell.2018. 01.011Google Scholar
  79. 79.
    Choe, C., Shin, Y.S., Kim, S.H., et al., Tumor-stromal interactions with direct cell contacts enhance motility of non-small cell lung cancer cells through the hedgehog signaling pathway, Anticancer Res., 2013, vol. 33, no. 9, pp. 3715—3723.Google Scholar
  80. 80.
    Yamaguchi, H. and Sakai, R., Direct interaction between carcinoma cells and cancer associated fibroblasts for the regulation of cancer invasion, Cancers (Basel), 2015, vol. 7, no. 4, pp. 2054—2062. doi 10.3390/cancers7040876CrossRefGoogle Scholar
  81. 81.
    Semba, S., Kodama, Y., Ohnuma, K., et al., Direct cancer-stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells, Br. J. Cancer, 2009, vol. 101, no. 8, pp. 1365—1373. doi 10.1038/sj.bjc. 6605309CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. V. Alekseenko
    • 1
  • G. S. Monastyrskaya
    • 1
  • E. D. Sverdlov
    • 1
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations