Russian Journal of Genetics

, Volume 54, Issue 8, pp 989–993 | Cite as

Inheritance of the Translocation in Chromosome 2D of Common Wheat from Aegilops speltoides Tausch with Leaf Rust Resistance Gene

  • I. G. AdoninaEmail author
  • E. Yu. Bukatich
  • V. V. Piskarev
  • V. A. Tyunin
  • E. R. Shreyder
  • E. A. Salina
Short Communications


The variety of common spring wheat Chelyaba 75 carries a translocation from Aegilops speltoides Tausch in the chromosome 2D, which contains the leaf rust resistance gene and gametocidal genes. The length of this translocation was determined by molecular-genetic analysis. It is shown that the long arm of chromosome 2D is completely replaced by the long arm of chromosome 2S; it is possible that translocation involves the near-centromere region of the short arm. According to molecular analysis data, the translocation from Ae. speltoides in the Chelyaba 75 variety differs from the 2S chromosome region carrying the Lr35/Sr39 genes. This makes it possible to designate the leaf rust resistance gene of the Chelyaba 75 as LrSp2. The inheritance of LrSp2 in four populations from crossing Chelyaba 75 with different varieties of common wheat was studied. Estimation of leaf rust resistance of F2 and F3 hybrids in field conditions (2015–2016) revealed the absence of susceptible plants. The presence of 2DS.2SL translocation in hybrid plants was confirmed by molecular analysis. The results indicate the action of the gametocidal gene localized in the 2DS.2SL translocation and the fact that its tight linkage to the LrSp2 gene is inherited in a series of generations.


common wheat Ae. speltoides introgression lines gametocidal genes leaf rust Chelyaba 75 variety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat. 2013. Scholar
  2. 2.
    Kerber, E.R. and Dyck, P.L., Transfer to hexaploid wheat of linked genes for adult–plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum, Genome, 1990, vol. 33, pp. 530–537. doi 10.1139/gen-2017-0023CrossRefGoogle Scholar
  3. 3.
    Tsujimoto, H. and Tsunewaki, K., Gametocidal genes in wheat and its relatives: 1. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides, Can. J. Genet. Cytol., 1984, vol. 26, pp. 78–84. doi 10.1139/g84-013CrossRefGoogle Scholar
  4. 4.
    Tsujimoto, H. and Tsunewaki, K., Gametocidal genes in wheat and its relatives: 3. Chromosome location and effects of two Aegilops speltoides-derived gametocidal genes in common wheat, Genome, 1988, vol. 30, pp. 239–244. doi 10.1139/g88-041CrossRefGoogle Scholar
  5. 5.
    Kota, R.S. and Dvorak, J., Genomic instability in wheat induced by chromosome 6Bs of Triticum speltoides, Genetics, 1988, vol. 120, pp. 1085–1094.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Marais, G.F., Bekker, T.A., Eksteen, A., et al., Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides, Euphytica, 2010, vol. 171, pp. 71–85. doi 10.1007/s10681-009-9996-2CrossRefGoogle Scholar
  7. 7.
    Miller, T.E., Preferential transmission of alien chromosome in wheat, Proceedings of the 2nd Kew Chromosome Conference, Brandham, P.E. and Bennett, M.D.L., Eds., London, 1983, pp. 173–182.Google Scholar
  8. 8.
    Odintsova, I.G., Agafonova, N.A., and Boguslavskii, R.L., Introgressive lines of soft wheat with brown rust resistance, transmitted from Aegilops speltoides, in Initial Material and the Problems of Selection of Wheat and Triticale, vol. 142 of Sbornik nauchnykh trudov po prikladnoi botananike, genetike i selektsii (Collection of Scientific Works on Applied Botany, Genetics, and Breeding), Leningrad: Vseross. Inst. Rastenievod., 1991, pp. 106–110.Google Scholar
  9. 9.
    Odintsova, I.G., Boguslavskii, R.L., and Agafonova, N.A., The usage of gametocidal genes in breeding for disease resistance, Tezisy dokladov IX Vsesoyuznogo soveshchaniya po immunitetu rastenii k boleznyam i vreditelyam (Proceedings of 11th All-Union Conference on Plant Immunity Against Diseases and Pests), Minsk, 1991, vol. 2, pp. 199–200.Google Scholar
  10. 10.
    Sibikeev, S.N., Voronina, S.A., Badaeva, E.D., and Druzhin, A.E., Study of resistance to leaf and stem rust in Triticum aestivumAegilops speltoides lines, Russ. J. Genet.: Appl. Res., 2016, vol. 6, no. 4, pp. 351–356. doi 10.1134/S2079059716040183CrossRefGoogle Scholar
  11. 11.
    Gosudarstvennyi reestr selektsionnykh, dostizhenii dopushchennykh k ispol’zovaniyu (State Register of Selection Achievements Allowed for Use), vol. 1: Sorta rastenii (Plant Cultivars), Moscow: Rosinformagrotekh, 2016.Google Scholar
  12. 12.
    Belan, I.A., Rosseeva, L.P., Meshkova, L.V., et al., Immunological assessment of the KASIB material under conditions of the southern forest–steppe of Western Siberia, Vestn. Altai. Gos. Agrar. Univ., 2012, vol. 96, no. 10, pp. 39–43.Google Scholar
  13. 13.
    Sochalova, L.P. and Likhenko, I.E., Genepool of sources of resistance of soft spring wheat to leaf-stems diseases, Dostizh. Nauki Tekhn. APK, 2013, no. 6, pp. 3–6.Google Scholar
  14. 14.
    Kiseleva, M.I., Kovalenko, E.D., and Mitrofanova, O.P., Screening of wheat varieties of the world collection of All-Russian Institute of Plant Industry on resistance to brown rust, Zashch. Karantin Rast., 2012, no. 11, pp. 23–25.Google Scholar
  15. 15.
    Adonina, I.G., Leonova, I.N., Badaeva, E.D., and Salina, E.A., Genotyping of hexaploid wheat varieties from different Russian regions, Russ. J. Genet.: Appl. Res., 2017, vol. 7, no. 1, pp. 6–13. doi 10.1134/S2079059717010014CrossRefGoogle Scholar
  16. 16.
    Plaschke, J., Ganal, M.W., and Röder, M.S., Detection of genetic diversity in closely related bread wheat using microsatellite markers, Theor. Appl. Genet., 1995, vol. 91, pp. 1001–1007.PubMedGoogle Scholar
  17. 17.
    Röder, M.S., Korzun, V., Wendehake, K., et al., A microsatellite map of wheat, Genetics, 1998, vol. 149, pp. 2007–2023.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Yu, J.-K., Dake, T.M., Singh, S., et al., Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat, Genome, 2004, vol. 47, pp. 805–818. doi 10.1139/G04-057CrossRefPubMedGoogle Scholar
  19. 19.
    Xue, S., Zhang, Z., Lin, F., et al., A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags, Theor. Appl. Genet., 2008, vol. 117, pp. 181–189. doi 10.1007/s00122-008-0764-9CrossRefPubMedGoogle Scholar
  20. 20.
    Seyfarth, R., Feuillet, C., Schachermayr, G., et al., Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat, Theor. Appl. Genet., 1999, vol. 99, pp. 554–560.CrossRefPubMedGoogle Scholar
  21. 21.
    Gul’tyaeva, E.I. and Sadovaya, A.S., Soft wheat selection for resistance to brown rust in Russia, Zashch. Karantin Rast., 2014, no. 10, pp. 24–26.Google Scholar
  22. 22.
    Mains, E.B. and Jackson, H.S., Physiological specialization in the leaf rust of wheat, Puccinia triticina Eriks, Phytopathology, 1926, vol. 16, pp. 89–120.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. G. Adonina
    • 1
    Email author
  • E. Yu. Bukatich
    • 1
  • V. V. Piskarev
    • 2
  • V. A. Tyunin
    • 3
  • E. R. Shreyder
    • 3
  • E. A. Salina
    • 1
  1. 1.Federal Research Center Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Siberian Research Institute for Plant Industry and Breeding, Branch of the Federal Research Center, Siberian BranchRussian Academy of SciencesKrasnoobsk, Novosibirsk oblastRussia
  3. 3.Chelyabinsk Research Institute of AgricultureTimiryazevsk, Chelyabinsk oblastRussia

Personalised recommendations